Abstract

Experimentally we find a 10 dB input power dynamic range advantage for amplification of phase encoded signals with quantum dot SOA as compared to low-confinement bulk SOA. An analysis of amplitude and phase effects shows that this improvement can be attributed to the lower alpha-factor found in QD SOA.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol. 22(1), 63–70 (2004).
    [Crossref]
  2. M. Sauer, and J. Hurley, “Experimental 43 Gb/s NRZ and DPSK performance comparison for systems with up to 8 concatenated SOAs,” in Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006. Conference on, (2006), p. CThY2.
  3. E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant Envelope WDM Signals,” IEEE J. Quantum Electron. 44(5), 403–409 (2008).
    [Crossref]
  4. J. D. Downie, and J. Hurley, “Effects of dispersion on SOA nonlinear impairments with DPSK signals,” in Proc. of LEOS 2008, (2008), p. WX3.
  5. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008).
    [Crossref] [PubMed]
  6. R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a-3dB bandwidth of up to 120 nm in semi-cooled operation,” in Proc. Optical Fiber Communication Conference (OFC'08), (San Diego, CA, USA, 2008), p. OTuC1.
  7. T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
    [Crossref]
  8. R. Bonk, C. Meuer, T. Vallaitis, S. Sygletos, P. Vorreau, S. Ben-Ezra, S. Tsadka, A. R. Kovsh, I. L. Krestnikov, M. Laemmlin, D. Bimberg, W. Freude, and J. Leuthold, “Single and multiple channel operation dynamics of linear quantum-dot semiconductor optical amplifier,” in Proc. European Conference on Optical Communication,2008. ECOC 2008, (Brussels, Belgium, 2008), p. Th.1.C.2.
  9. H. A. Haus, “The noise figure of optical amplifiers,” IEEE Photon. Technol. Lett. 10(11), 1602–1604 (1998).
    [Crossref]
  10. T. Briant, P. Grangier, R. Tualle-Brouri, A. Bellemain, R. Brenot, and B. Thedrez, “Accurate determination of the noise figure of polarization-dependent optical amplifiers: theory and experiment,” J. Lightwave Technol. 24(3), 1499–1503 (2006).
    [Crossref]
  11. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
    [Crossref]
  12. C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16(3), 858–860 (2004).
    [Crossref]
  13. F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun. 199(1-4), 111–115 (2001).
    [Crossref]
  14. A. A. M. Saleh and I. M. I. Habbab, “Effects of semiconductor-optical-amplifier nonlinearity on the performance of high-speed intensity-modulation lightwave systems,” IEEE Trans. Commun. 38(6), 839–846 (1990).
    [Crossref]
  15. K.-P. Ho, “The effect of interferometer phase error on direct-detection DPSK and DQPSK signals,” IEEE Photon. Technol. Lett. 16(1), 308–310 (2004).
    [Crossref]
  16. H. Kim and P. J. Winzer, “Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems,” J. Lightwave Technol. 21(9), 1887–1891 (2003).
    [Crossref]
  17. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
    [Crossref]
  18. X. Wei and L. Zhang, “Analysis of the phase noise in saturated SOAs for DPSK applications,” IEEE J. Quantum Electron. 41(4), 554–561 (2005).
    [Crossref]
  19. J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 891–900 (2007).
    [Crossref]

2008 (2)

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant Envelope WDM Signals,” IEEE J. Quantum Electron. 44(5), 403–409 (2008).
[Crossref]

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008).
[Crossref] [PubMed]

2007 (3)

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 891–900 (2007).
[Crossref]

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

2006 (2)

2005 (1)

X. Wei and L. Zhang, “Analysis of the phase noise in saturated SOAs for DPSK applications,” IEEE J. Quantum Electron. 41(4), 554–561 (2005).
[Crossref]

2004 (3)

C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16(3), 858–860 (2004).
[Crossref]

K.-P. Ho, “The effect of interferometer phase error on direct-detection DPSK and DQPSK signals,” IEEE Photon. Technol. Lett. 16(1), 308–310 (2004).
[Crossref]

D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol. 22(1), 63–70 (2004).
[Crossref]

2003 (1)

2001 (1)

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun. 199(1-4), 111–115 (2001).
[Crossref]

1998 (1)

H. A. Haus, “The noise figure of optical amplifiers,” IEEE Photon. Technol. Lett. 10(11), 1602–1604 (1998).
[Crossref]

1990 (1)

A. A. M. Saleh and I. M. I. Habbab, “Effects of semiconductor-optical-amplifier nonlinearity on the performance of high-speed intensity-modulation lightwave systems,” IEEE Trans. Commun. 38(6), 839–846 (1990).
[Crossref]

Accard, A.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Akiyama, T.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

Arakawa, Y.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

Bellemain, A.

Bimberg, D.

Bonk, R.

Brenot, R.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

T. Briant, P. Grangier, R. Tualle-Brouri, A. Bellemain, R. Brenot, and B. Thedrez, “Accurate determination of the noise figure of polarization-dependent optical amplifiers: theory and experiment,” J. Lightwave Technol. 24(3), 1499–1503 (2006).
[Crossref]

Briant, T.

Ciaramella, E.

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant Envelope WDM Signals,” IEEE J. Quantum Electron. 44(5), 403–409 (2008).
[Crossref]

D’Errico, A.

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant Envelope WDM Signals,” IEEE J. Quantum Electron. 44(5), 403–409 (2008).
[Crossref]

Dagens, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Derouin, E.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Donzella, V.

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant Envelope WDM Signals,” IEEE J. Quantum Electron. 44(5), 403–409 (2008).
[Crossref]

Dorrer, C.

C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16(3), 858–860 (2004).
[Crossref]

Drisse, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Duan, G.-H.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Essiambre, R.-J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Freude, W.

Ginovart, F.

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun. 199(1-4), 111–115 (2001).
[Crossref]

Gouezigou, O. L.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Grangier, P.

Habbab, I. M. I.

A. A. M. Saleh and I. M. I. Habbab, “Effects of semiconductor-optical-amplifier nonlinearity on the performance of high-speed intensity-modulation lightwave systems,” IEEE Trans. Commun. 38(6), 839–846 (1990).
[Crossref]

Haus, H. A.

H. A. Haus, “The noise figure of optical amplifiers,” IEEE Photon. Technol. Lett. 10(11), 1602–1604 (1998).
[Crossref]

Ho, K.-P.

K.-P. Ho, “The effect of interferometer phase error on direct-detection DPSK and DQPSK signals,” IEEE Photon. Technol. Lett. 16(1), 308–310 (2004).
[Crossref]

Kang, I.

C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16(3), 858–860 (2004).
[Crossref]

Kim, H.

Koos, C.

Laemmlin, M.

Landreau, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Lelarge, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Leuthold, J.

Maitra, A.

Make, D.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Meuer, C.

Poingt, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Pommereau, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Poulton, C. G.

Provost, J.-G.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Rousseau, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Saleh, A. A. M.

A. A. M. Saleh and I. M. I. Habbab, “Effects of semiconductor-optical-amplifier nonlinearity on the performance of high-speed intensity-modulation lightwave systems,” IEEE Trans. Commun. 38(6), 839–846 (1990).
[Crossref]

Simon, J. C.

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun. 199(1-4), 111–115 (2001).
[Crossref]

Spiekman, L. H.

Sugawara, M.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

Thedrez, B.

Tualle-Brouri, R.

Valiente, I.

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun. 199(1-4), 111–115 (2001).
[Crossref]

Vallaitis, T.

van Dijk, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Wang, J.

Wei, X.

X. Wei and L. Zhang, “Analysis of the phase noise in saturated SOAs for DPSK applications,” IEEE J. Quantum Electron. 41(4), 554–561 (2005).
[Crossref]

Winzer, P. J.

Zhang, L.

X. Wei and L. Zhang, “Analysis of the phase noise in saturated SOAs for DPSK applications,” IEEE J. Quantum Electron. 41(4), 554–561 (2005).
[Crossref]

Zimmerman, D. R.

IEEE J. Quantum Electron. (2)

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant Envelope WDM Signals,” IEEE J. Quantum Electron. 44(5), 403–409 (2008).
[Crossref]

X. Wei and L. Zhang, “Analysis of the phase noise in saturated SOAs for DPSK applications,” IEEE J. Quantum Electron. 41(4), 554–561 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (3)

C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16(3), 858–860 (2004).
[Crossref]

H. A. Haus, “The noise figure of optical amplifiers,” IEEE Photon. Technol. Lett. 10(11), 1602–1604 (1998).
[Crossref]

K.-P. Ho, “The effect of interferometer phase error on direct-detection DPSK and DQPSK signals,” IEEE Photon. Technol. Lett. 16(1), 308–310 (2004).
[Crossref]

IEEE Trans. Commun. (1)

A. A. M. Saleh and I. M. I. Habbab, “Effects of semiconductor-optical-amplifier nonlinearity on the performance of high-speed intensity-modulation lightwave systems,” IEEE Trans. Commun. 38(6), 839–846 (1990).
[Crossref]

J. Lightwave Technol. (4)

Opt. Commun. (1)

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun. 199(1-4), 111–115 (2001).
[Crossref]

Opt. Express (1)

Proc. IEEE (2)

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Other (4)

R. Bonk, C. Meuer, T. Vallaitis, S. Sygletos, P. Vorreau, S. Ben-Ezra, S. Tsadka, A. R. Kovsh, I. L. Krestnikov, M. Laemmlin, D. Bimberg, W. Freude, and J. Leuthold, “Single and multiple channel operation dynamics of linear quantum-dot semiconductor optical amplifier,” in Proc. European Conference on Optical Communication,2008. ECOC 2008, (Brussels, Belgium, 2008), p. Th.1.C.2.

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a-3dB bandwidth of up to 120 nm in semi-cooled operation,” in Proc. Optical Fiber Communication Conference (OFC'08), (San Diego, CA, USA, 2008), p. OTuC1.

M. Sauer, and J. Hurley, “Experimental 43 Gb/s NRZ and DPSK performance comparison for systems with up to 8 concatenated SOAs,” in Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006. Conference on, (2006), p. CThY2.

J. D. Downie, and J. Hurley, “Effects of dispersion on SOA nonlinear impairments with DPSK signals,” in Proc. of LEOS 2008, (2008), p. WX3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Comparison of QD and bulk SOA characteristics. (a) Fiber-to-fiber gain, noise figure (NF) and saturation power levels for a 1.5 µm QD SOA (black) and a bulk SOA (blue) with a low optical confinement of 20%. For equal current densities all characteristics are comparable. (b) Peak-to-peak (P2P) phase changes of the bulk SOA compared to the QD SOA as a function of the channel input power. The phase changes are measured as XPM of a 33% RZ-OOK 40 Gbit/s “1010” data sequence at a wavelength of 1557.4 nm on a cw signal at a wavelength of 1554.1 nm. The average input power of the cw (ch. 1) and data (ch. 2) channels is always adjusted to be equal, thereby defining the channel input power. (c) Measured phase changes of bulk SOA versus QD SOA from (b). For all input power levels the phase effect of the QD SOA is less than the phase effect of the bulk SOA by a factor of 0.58.

Fig. 2
Fig. 2

Experimental setup. Two 28 GBd NRZ-DQPSK channels are equalized and de-correlated using 0.5 m of fiber. The average power of both channels is varied and launched into a bulk or QD SOA. A single channel is selected, amplified and demodulated in a DQPSK receiver (Rx), consisting of a delay interferometer (DI) followed by a balanced detector. The electrical signal is then analyzed using a digital communications analyzer (DCA) and a bit error ratio tester (BERT).

Fig. 3
Fig. 3

Power penalty vs. channel input power levels. The input power dynamic range (IPDR) is defined as the range of input power levels with less than 2 dB power penalty compared to the back-to-back case. Red arrows indicate the IPDR enhancement of the QD SOA (black) over the bulk SOA (blue). (a), (b) QD SOA improve the IPDR at a BER of 10−3 by 5 dB and >10 dB compared to bulk SOA for one and two 28 GBd NRZ-DQPSK channels, respectively. (c), (d) For a BER of 10−9, the QD SOA IPDR is enhanced by 5 dB. The filled symbols correspond to the I-channel, whereas the open symbols represent the Q-channel.

Fig. 4
Fig. 4

Demodulated NRZ-DQPSK eye diagrams for high SOA input power levels of 6 dBm. (a) Back-to-back eye diagram of 28 GBd Q-channel at optimum receiver sensitivity. (b) No signal degradation for QD SOA high input powers. (c) Reduced eye opening and signal quality degradation for SOA.

Fig. 5
Fig. 5

Amplitude distortions of the NRZ-DQPSK envelope in QD and bulk SOA. (a) Possible transitions in the constellation diagram. For a better long-term stability of the transmitter, only some transitions (“B”, “C”) are generated using amplitude modulation, instead of employing pure phase modulation (all states on the circle). (b) Example of the power envelope eye diagram for a 28 GBd NRZ-DQPSK signal, showing all possible transitions. A histogram is taken at the transition in a 1.6 ps time window. Assuming a Gaussian distribution, the mean value and standard deviation are investigated as a function of the device input power for both device types.

Fig. 6
Fig. 6

Amplitude transitions in bulk (blue) and QD SOA (black): Dependence of mean values (■, filled symbols) and standard deviations (□, open symbols) as a function of the channel input power. For all three possible transitions, bulk and QD SOA show an identical behavior. Measured at optimum receiver input power, the standard deviations are unaffected by input power levels above −10 dBm. No difference between bulk and QD SOA is observed with respect to the signal amplitude.

Fig. 7
Fig. 7

Comparison of QD and bulk power penalty for all channels and BER. (a) Bulk SOA 1 ch. power penalty for BER = 10−9 as an example. The power penalty curves are marked according to the corresponding limits of the IPDR. For low input power levels, the DQPSK signal is degraded by noise (green). For high input powers, saturation of the SOA induces phase errors (red). (b) Power penalty for QD SOA vs. power penalty for bulk SOA when increasing the channel input power for BER = 10−9 (○: 1 ch., +: 2 ch) and BER = 10−3 (□: 1 ch., × : 2 ch.). The penalty is attributed to either noise or phase errors. All measurements shown in Fig. 3 displayed a similar ratio of the penalties. The largest difference between the samples arises for high input powers. (c) The power penalty for high input powers can be related to an effective phase error of the delay interferometer by the relation presented in [15]. The slope of a linear fit is 0.5, which actually corresponds to the ratio of the respective alpha-factors. The very good agreement between the calculated and measured ratio of the alpha-factors provides the explanation of the advantage of QD SOA in terms of IPDR: The smaller alpha-factor of QD SOA reduces the phase impairments.

Tables (1)

Tables Icon

Table 1 Input power dynamic range (IPDR) at 2 dB power penalty for bulk and QD SOA. In all cases, the QD SOA shows a significant IPDR enhancement compared to a conventional bulk SOA.

Metrics