Abstract

The redistribution of elements in a multicomponent oxyfluoride glass is induced by a 250 kHz femtosecond laser. Elemental distribution in the cross section of the modified region along the laser propagation axis is analyzed by an electron microprobe analyzer. The results indicate that the relative concentrations of network formers of the glass are higher in the central area of the modified region and lower in the periphery of the modified region compared with the unirradiated areas. However, the relative concentrations of network modifiers are as opposed to that of network formers. Fluorescence spectra confirm that the distribution of fluorescence intensity of Yb3+ in the modified region is consistent with that of its concentration. The effects of spherical aberration of the incident beam on the elemental redistribution are also discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  2. M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Quant. Electron. 14(5), 1370–1381 (2008).
    [CrossRef]
  3. C. T. Hebeisen, G. Sciaini, M. Harb, R. Ernstorfer, S. G. Kruglik, and R. J. D. Miller, “Direct visualization of charge distributions during femtosecond laser ablation of a Si (100) surface,” Phys. Rev. B 78(8), 081403 (2008).
    [CrossRef]
  4. S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
    [CrossRef] [PubMed]
  5. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  6. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
    [CrossRef]
  7. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26(1), 42–43 (2001).
    [CrossRef]
  8. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725 (2001).
    [CrossRef]
  9. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [CrossRef] [PubMed]
  10. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]
  11. W. J. Yang, C. Corbari, P. G. Kazansky, K. Sakaguchi, and I. C. Carvalho, “Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing,” Opt. Express 16(20), 16215–16226 (2008).
    [CrossRef] [PubMed]
  12. K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
    [CrossRef]
  13. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three- dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90(18), 181109 (2007).
    [CrossRef]
  14. Y. Liu, B. Zhu, L. Wang, Y. Dai, H. Ma, and J. Qiu, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92, 121113/1–3 (2008).
    [CrossRef]
  15. S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008).
    [CrossRef]
  16. Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
    [CrossRef] [PubMed]
  17. K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
    [CrossRef]
  18. A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
    [CrossRef]
  19. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberration,” J. Appl. Phys. 98(1), 013517 (2005).
    [CrossRef]
  20. N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, “Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass,” Opt. Express 15(19), 12395–12408 (2007).
    [CrossRef] [PubMed]
  21. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
    [CrossRef] [PubMed]
  22. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
    [CrossRef]
  23. S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
    [CrossRef]
  24. Y. Liu, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477(1-3), 122–125 (2009).
    [CrossRef]
  25. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
    [CrossRef]
  26. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1-3), 91–95 (1998).
    [CrossRef]
  27. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
    [CrossRef] [PubMed]
  28. P. Török, P. Varga, and G. Nèmeth, “Analytical solution of the diffraction integrals and interpretation of wave-front distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12(12), 2660–2671 (1995).
    [CrossRef]

2009

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

Y. Liu, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477(1-3), 122–125 (2009).
[CrossRef]

2008

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[CrossRef]

W. J. Yang, C. Corbari, P. G. Kazansky, K. Sakaguchi, and I. C. Carvalho, “Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing,” Opt. Express 16(20), 16215–16226 (2008).
[CrossRef] [PubMed]

Y. Liu, B. Zhu, L. Wang, Y. Dai, H. Ma, and J. Qiu, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92, 121113/1–3 (2008).
[CrossRef]

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Quant. Electron. 14(5), 1370–1381 (2008).
[CrossRef]

C. T. Hebeisen, G. Sciaini, M. Harb, R. Ernstorfer, S. G. Kruglik, and R. J. D. Miller, “Direct visualization of charge distributions during femtosecond laser ablation of a Si (100) surface,” Phys. Rev. B 78(8), 081403 (2008).
[CrossRef]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

2007

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three- dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90(18), 181109 (2007).
[CrossRef]

N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, “Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass,” Opt. Express 15(19), 12395–12408 (2007).
[CrossRef] [PubMed]

2005

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberration,” J. Appl. Phys. 98(1), 013517 (2005).
[CrossRef]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

2003

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

2002

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[CrossRef]

2001

1998

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1-3), 91–95 (1998).
[CrossRef]

1996

1995

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Quant. Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Arai, A. Y.

Audouard, E.

Bennion, I.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Quant. Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberration,” J. Appl. Phys. 98(1), 013517 (2005).
[CrossRef]

Borrelli, N. F.

Bovatsek, J.

Brodeur, A.

Cao, S.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three- dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90(18), 181109 (2007).
[CrossRef]

Carvalho, I. C.

Chen, J.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

Chen, W. J.

Cheng, Y.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[CrossRef]

Corbari, C.

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberration,” J. Appl. Phys. 98(1), 013517 (2005).
[CrossRef]

Couairon, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

Dai, Y.

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[CrossRef]

Y. Liu, B. Zhu, L. Wang, Y. Dai, H. Ma, and J. Qiu, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92, 121113/1–3 (2008).
[CrossRef]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three- dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90(18), 181109 (2007).
[CrossRef]

Davis, K. M.

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Quant. Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Dubov, M.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Quant. Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Eaton, S. M.

Ernstorfer, R.

C. T. Hebeisen, G. Sciaini, M. Harb, R. Ernstorfer, S. G. Kruglik, and R. J. D. Miller, “Direct visualization of charge distributions during femtosecond laser ablation of a Si (100) surface,” Phys. Rev. B 78(8), 081403 (2008).
[CrossRef]

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

Fujita, K.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Fujiwara, S.

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[CrossRef]

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

García, J. F.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Harb, M.

C. T. Hebeisen, G. Sciaini, M. Harb, R. Ernstorfer, S. G. Kruglik, and R. J. D. Miller, “Direct visualization of charge distributions during femtosecond laser ablation of a Si (100) surface,” Phys. Rev. B 78(8), 081403 (2008).
[CrossRef]

Hebeisen, C. T.

C. T. Hebeisen, G. Sciaini, M. Harb, R. Ernstorfer, S. G. Kruglik, and R. J. D. Miller, “Direct visualization of charge distributions during femtosecond laser ablation of a Si (100) surface,” Phys. Rev. B 78(8), 081403 (2008).
[CrossRef]

Herman, P. R.

Hirao, K.

Y. Liu, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477(1-3), 122–125 (2009).
[CrossRef]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[CrossRef]

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008).
[CrossRef]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1-3), 91–95 (1998).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberration,” J. Appl. Phys. 98(1), 013517 (2005).
[CrossRef]

Ho, S.

Hu, X.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[CrossRef]

Huot, N.

Juodkazis, S.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725 (2001).
[CrossRef]

Kanehira, S.

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[CrossRef]

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008).
[CrossRef]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Kazansky, P. G.

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725 (2001).
[CrossRef]

Kruglik, S. G.

C. T. Hebeisen, G. Sciaini, M. Harb, R. Ernstorfer, S. G. Kruglik, and R. J. D. Miller, “Direct visualization of charge distributions during femtosecond laser ablation of a Si (100) surface,” Phys. Rev. B 78(8), 081403 (2008).
[CrossRef]

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

Li, J.

Liu, Y.

Y. Liu, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477(1-3), 122–125 (2009).
[CrossRef]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

Y. Liu, B. Zhu, L. Wang, Y. Dai, H. Ma, and J. Qiu, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92, 121113/1–3 (2008).
[CrossRef]

Lu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three- dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90(18), 181109 (2007).
[CrossRef]

Luo, J.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

Ma, H.

Y. Liu, B. Zhu, L. Wang, Y. Dai, H. Ma, and J. Qiu, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92, 121113/1–3 (2008).
[CrossRef]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three- dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90(18), 181109 (2007).
[CrossRef]

Marcinkevicius, A.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[CrossRef]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Quant. Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Matsuo, S.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725 (2001).
[CrossRef]

Mauclair, C.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[CrossRef]

Mermillod-Blondin, A.

Mezentsev, V. K.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Quant. Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Miller, R. J. D.

C. T. Hebeisen, G. Sciaini, M. Harb, R. Ernstorfer, S. G. Kruglik, and R. J. D. Miller, “Direct visualization of charge distributions during femtosecond laser ablation of a Si (100) surface,” Phys. Rev. B 78(8), 081403 (2008).
[CrossRef]

Misawa, H.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725 (2001).
[CrossRef]

Miura, K.

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

Y. Liu, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477(1-3), 122–125 (2009).
[CrossRef]

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008).
[CrossRef]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[CrossRef]

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1-3), 91–95 (1998).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Mizeikis, V.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[CrossRef]

Mysyrowicz, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

Nèmeth, G.

Ng, M. L.

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

Qian, B.

Qiu, J.

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

Y. Liu, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477(1-3), 122–125 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[CrossRef]

Y. Liu, B. Zhu, L. Wang, Y. Dai, H. Ma, and J. Qiu, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92, 121113/1–3 (2008).
[CrossRef]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three- dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90(18), 181109 (2007).
[CrossRef]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[CrossRef]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberration,” J. Appl. Phys. 98(1), 013517 (2005).
[CrossRef]

Sakaguchi, K.

Sakaguchi, S.

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[CrossRef]

Sakakura, M.

Y. Liu, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477(1-3), 122–125 (2009).
[CrossRef]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[CrossRef]

Sciaini, G.

C. T. Hebeisen, G. Sciaini, M. Harb, R. Ernstorfer, S. G. Kruglik, and R. J. D. Miller, “Direct visualization of charge distributions during femtosecond laser ablation of a Si (100) surface,” Phys. Rev. B 78(8), 081403 (2008).
[CrossRef]

Shah, L.

Shimizu, M.

Y. Liu, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477(1-3), 122–125 (2009).
[CrossRef]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

Shimotsuma, Y.

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

Y. Liu, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477(1-3), 122–125 (2009).
[CrossRef]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[CrossRef]

Si, J.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberration,” J. Appl. Phys. 98(1), 013517 (2005).
[CrossRef]

Song, J.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[CrossRef]

Stoian, R.

Streltsov, A. M.

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

Sugimoto, N.

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberration,” J. Appl. Phys. 98(1), 013517 (2005).
[CrossRef]

Török, P.

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

Varga, P.

Wang, L.

Y. Liu, B. Zhu, L. Wang, Y. Dai, H. Ma, and J. Qiu, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92, 121113/1–3 (2008).
[CrossRef]

Wang, X.

Y. Liu, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477(1-3), 122–125 (2009).
[CrossRef]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[CrossRef]

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Quant. Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Xu, Z.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[CrossRef]

Yang, W. J.

Ye, S.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

Yoshino, F.

Yu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three- dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90(18), 181109 (2007).
[CrossRef]

Zhang, H.

Zhu, B.

Y. Liu, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477(1-3), 122–125 (2009).
[CrossRef]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

Y. Liu, B. Zhu, L. Wang, Y. Dai, H. Ma, and J. Qiu, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92, 121113/1–3 (2008).
[CrossRef]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three- dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90(18), 181109 (2007).
[CrossRef]

Appl. Phys. Lett.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725 (2001).
[CrossRef]

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[CrossRef]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three- dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90(18), 181109 (2007).
[CrossRef]

Appl. Phys. Lett.

Y. Liu, B. Zhu, L. Wang, Y. Dai, H. Ma, and J. Qiu, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92, 121113/1–3 (2008).
[CrossRef]

Appl. Phys. Lett.

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008).
[CrossRef]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008).
[CrossRef]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[CrossRef]

Chem. Phys. Lett.

Y. Liu, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477(1-3), 122–125 (2009).
[CrossRef]

IEEE J. Sel. Quant. Electron.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Quant. Electron. 14(5), 1370–1381 (2008).
[CrossRef]

J. Appl. Phys.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberration,” J. Appl. Phys. 98(1), 013517 (2005).
[CrossRef]

J. Non-Cryst. Solids

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1-3), 91–95 (1998).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Nat. Photonics

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

C. T. Hebeisen, G. Sciaini, M. Harb, R. Ernstorfer, S. G. Kruglik, and R. J. D. Miller, “Direct visualization of charge distributions during femtosecond laser ablation of a Si (100) surface,” Phys. Rev. B 78(8), 081403 (2008).
[CrossRef]

Phys. Rev. Lett.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the laser writing.

Fig. 2
Fig. 2

(a) Optical microscope image of yz-plane of the modified structure in glass. (b) The normalized on-axis fluence distribution with consideration of the spherical aberration effect at the focal depth of 50 µm through an objective with NA = 0.8. This simulation is based on the model of Ref [28].

Fig. 3
Fig. 3

(a) Mapping of elemental distribution of the modified area in yz-plane measured by EPMA. (b) and (c) Relative concentration profiles of each ion along line AA´ and line BB´ in the backscattering image, respectively.

Fig. 4
Fig. 4

(a) Fluorescence spectra of the marked areas in the modified structure (excitation wavelength 785 nm). (b) and (c) Fluorescence intensity at 975 nm along the transversal and longitudinal scanning lines in the insets, respectively.

Fig. 5
Fig. 5

Effect of focusing depth beneath the glass surface on the laser modified area with the presence of spherical aberration.

Metrics