Abstract

Supercontinuum generation in a water-filled photonic crystal fiber is reported. By only filling the central hollow core of this fiber with water, the fiber properties are changed such that the air cladding provides broadband guiding. Using a pump wavelength of 1200 nm and few-microjoule pump pulses, the generation of supercontinua with two-octave spectral coverage from 410 to 1640 nm is experimentally demonstrated. Numerical simulations confirm these results, revealing a transition from a soliton-induced mechanism to self-phase modulation dominated spectral broadening with increasing pump power. Compared to supercontinua generated in glass core photonic fibers, the liquid core supercontinua show a higher degree of coherence, and the larger mode field area and the higher damage threshold of the water core enable significantly higher pulse energies of the white light pulses, ranging up to 0.39 μ J.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
    [CrossRef]
  2. R. R. Alfano, "The Supercontinuum Laser Source," Springer, New York, 2nd edition (2005).
  3. A. Brodeur and S. L. Chin, "Ultrafast white-light continuum generation and self-focusing in transparent condensed media," J. Opt. Soc. Am. B 16, 637-650 (1999).
    [CrossRef]
  4. M. Bradler, P. Baum, and E. Riedle, "Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses," Appl. Phys. B 97, 561-574 (2009).
    [CrossRef]
  5. W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215-229 (2003).
    [CrossRef]
  6. M. Nisoli, S. De Silvestri, O. Svelto, R. Szip˝ocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, "Compression of high-energy laser pulses below 5 fs," Opt. Lett. 22, 522-524 (1997).
    [CrossRef] [PubMed]
  7. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995).
    [CrossRef] [PubMed]
  8. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16, 1300-1320 (2008).
    [CrossRef] [PubMed]
  9. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  10. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  11. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  12. J.M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  13. Q1. P. Russell, "Photonic Crystal Fiber: Finding the Holey Grail," Opt. Photon. News 18, 26-31 (2007).
    [CrossRef]
  14. V. I. Bespalov and V. I. Talanov, "Filamentary structure of light beams in nonlinear liquids," JETP Lett. 3, 307- 310 (1966).
  15. A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  16. P. Glas, D. Fischer, G. Steinmeyer, A. Husakou, J. Herrmann, R. Iliew, N. B. Skibina, V. I. Beloglasov and Y. S. Skibina, "Supercontinuum generation in a two-dimensional photonic kagome crystal," Appl. Phys. B 81, 209-217 (2005).
    [CrossRef]
  17. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, "Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber," Appl. Phys. Lett. 95, 161103 (2009).
    [CrossRef]
  18. A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, "Supercontinuum generation in a water-core photonic crystal fiber," Opt. Express 16, 9673-9676 (2008).
    [CrossRef]
  19. NKT-Photonics datasheet, http://www.nktphotonics.com/files/files/HC-800-01.pdf
  20. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  21. A. Husakou and J. Herrmann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers," J. Opt. Soc. Am. B 19, 2171-2182 (2002).
    [CrossRef]
  22. M. Khashan and A. Nassif, "Accurate determination of solid and liquid dispersions from spectra channeled with the Fabry-Perot interferometer," Appl. Opt. 36, 6843-6851 (1997).
    [CrossRef]
  23. L. Kou, D. Labrie, and P. Chylek, "Refractive indices of water and ice in the 0.65-2.5 μm spectral range," Appl. Opt. 32, 3531-3540 (1993).
    [CrossRef] [PubMed]
  24. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, "Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells," Opt. Express 15, 10303- 10317 (2007).
    [CrossRef] [PubMed]
  25. I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
    [CrossRef]
  26. G. A. Agrawal, "Nonlinear Fiber Optics," Academic, Boston (1995).
  27. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel fiber," Opt. Express 13, 3890- 3895 (2005).
    [CrossRef] [PubMed]
  28. Y. Huang, Y. Xu, and A. Yariv, "Selective filling of photonic crystal fibers," Appl. Phys. Lett. 85, 5182- 5184 (2004).
    [CrossRef]
  29. Q2. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibers," J. Opt. A 7, L13-L20 (2005).
  30. L. Xiao,W. Jin,M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
    [CrossRef] [PubMed]
  31. T. Hansel, G. Steinmeyer, R. Grunwald, C. Falldorf, J. Bonitz, C. Kaufmann, V. Kebbel, and U. Griebner, "Synthesized femtosecond laser pulse source for two-wavelength contouring with simultaneously recorded digital holograms," Opt. Express 17, 2686-2695 (2009).
    [CrossRef] [PubMed]

2009 (3)

M. Bradler, P. Baum, and E. Riedle, "Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses," Appl. Phys. B 97, 561-574 (2009).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, "Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber," Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

T. Hansel, G. Steinmeyer, R. Grunwald, C. Falldorf, J. Bonitz, C. Kaufmann, V. Kebbel, and U. Griebner, "Synthesized femtosecond laser pulse source for two-wavelength contouring with simultaneously recorded digital holograms," Opt. Express 17, 2686-2695 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, "Supercontinuum generation in a water-core photonic crystal fiber," Opt. Express 16, 9673-9676 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16, 1300-1320 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

J.M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

2005 (4)

P. Glas, D. Fischer, G. Steinmeyer, A. Husakou, J. Herrmann, R. Iliew, N. B. Skibina, V. I. Beloglasov and Y. S. Skibina, "Supercontinuum generation in a two-dimensional photonic kagome crystal," Appl. Phys. B 81, 209-217 (2005).
[CrossRef]

C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel fiber," Opt. Express 13, 3890- 3895 (2005).
[CrossRef] [PubMed]

Q2. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibers," J. Opt. A 7, L13-L20 (2005).

L. Xiao,W. Jin,M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
[CrossRef] [PubMed]

2004 (1)

Y. Huang, Y. Xu, and A. Yariv, "Selective filling of photonic crystal fibers," Appl. Phys. Lett. 85, 5182- 5184 (2004).
[CrossRef]

2003 (1)

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215-229 (2003).
[CrossRef]

2002 (2)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers," J. Opt. Soc. Am. B 19, 2171-2182 (2002).
[CrossRef]

2001 (1)

A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

2000 (2)

1999 (1)

1997 (3)

1995 (1)

1994 (1)

I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
[CrossRef]

1993 (1)

1970 (1)

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

1966 (1)

V. I. Bespalov and V. I. Talanov, "Filamentary structure of light beams in nonlinear liquids," JETP Lett. 3, 307- 310 (1966).

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

Arnold, C. L.

Baum, P.

M. Bradler, P. Baum, and E. Riedle, "Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses," Appl. Phys. B 97, 561-574 (2009).
[CrossRef]

Becker, A.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215-229 (2003).
[CrossRef]

Beloglasov, V. I.

P. Glas, D. Fischer, G. Steinmeyer, A. Husakou, J. Herrmann, R. Iliew, N. B. Skibina, V. I. Beloglasov and Y. S. Skibina, "Supercontinuum generation in a two-dimensional photonic kagome crystal," Appl. Phys. B 81, 209-217 (2005).
[CrossRef]

Bespalov, V. I.

V. I. Bespalov and V. I. Talanov, "Filamentary structure of light beams in nonlinear liquids," JETP Lett. 3, 307- 310 (1966).

Birks, T. A.

Bjarklev, A.

Q2. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibers," J. Opt. A 7, L13-L20 (2005).

Bonitz, J.

Bozolan, A.

A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, "Supercontinuum generation in a water-core photonic crystal fiber," Opt. Express 16, 9673-9676 (2008).
[CrossRef]

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, "Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses," Appl. Phys. B 97, 561-574 (2009).
[CrossRef]

Braun, A.

Brodeur, A.

Canning, J.

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, "Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber," Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Chin, S. L.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215-229 (2003).
[CrossRef]

A. Brodeur and S. L. Chin, "Ultrafast white-light continuum generation and self-focusing in transparent condensed media," J. Opt. Soc. Am. B 16, 637-650 (1999).
[CrossRef]

Chylek, P.

Coen, S.

J.M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Cordeiro, C. M. B.

A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, "Supercontinuum generation in a water-core photonic crystal fiber," Opt. Express 16, 9673-9676 (2008).
[CrossRef]

de Matos, C. J. S.

A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, "Supercontinuum generation in a water-core photonic crystal fiber," Opt. Express 16, 9673-9676 (2008).
[CrossRef]

De Silvestri, S.

Demokan, M. S.

dos Santos, E. M.

A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, "Supercontinuum generation in a water-core photonic crystal fiber," Opt. Express 16, 9673-9676 (2008).
[CrossRef]

Du, D.

Dudley, J.M.

J.M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Ertmer, W.

Falldorf, C.

Ferencz, K.

Fischer, D.

P. Glas, D. Fischer, G. Steinmeyer, A. Husakou, J. Herrmann, R. Iliew, N. B. Skibina, V. I. Beloglasov and Y. S. Skibina, "Supercontinuum generation in a two-dimensional photonic kagome crystal," Appl. Phys. B 81, 209-217 (2005).
[CrossRef]

Foggi, P.

I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Genty, G.

J.M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Glas, P.

P. Glas, D. Fischer, G. Steinmeyer, A. Husakou, J. Herrmann, R. Iliew, N. B. Skibina, V. I. Beloglasov and Y. S. Skibina, "Supercontinuum generation in a two-dimensional photonic kagome crystal," Appl. Phys. B 81, 209-217 (2005).
[CrossRef]

Golubtsov, I. S.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215-229 (2003).
[CrossRef]

Griebner, U.

T. Hansel, G. Steinmeyer, R. Grunwald, C. Falldorf, J. Bonitz, C. Kaufmann, V. Kebbel, and U. Griebner, "Synthesized femtosecond laser pulse source for two-wavelength contouring with simultaneously recorded digital holograms," Opt. Express 17, 2686-2695 (2009).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Groothoff, N.

Grunwald, R.

Hansel, T.

Hansen, T. P.

Q2. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibers," J. Opt. A 7, L13-L20 (2005).

Heisterkamp, A.

Herrmann, J.

P. Glas, D. Fischer, G. Steinmeyer, A. Husakou, J. Herrmann, R. Iliew, N. B. Skibina, V. I. Beloglasov and Y. S. Skibina, "Supercontinuum generation in a two-dimensional photonic kagome crystal," Appl. Phys. B 81, 209-217 (2005).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers," J. Opt. Soc. Am. B 19, 2171-2182 (2002).
[CrossRef]

A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Ho, H. L.

Hoo, Y. L.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, "Selective filling of photonic crystal fibers," Appl. Phys. Lett. 85, 5182- 5184 (2004).
[CrossRef]

Husakou, A.

P. Glas, D. Fischer, G. Steinmeyer, A. Husakou, J. Herrmann, R. Iliew, N. B. Skibina, V. I. Beloglasov and Y. S. Skibina, "Supercontinuum generation in a two-dimensional photonic kagome crystal," Appl. Phys. B 81, 209-217 (2005).
[CrossRef]

A. Husakou and J. Herrmann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers," J. Opt. Soc. Am. B 19, 2171-2182 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Iliew, R.

P. Glas, D. Fischer, G. Steinmeyer, A. Husakou, J. Herrmann, R. Iliew, N. B. Skibina, V. I. Beloglasov and Y. S. Skibina, "Supercontinuum generation in a two-dimensional photonic kagome crystal," Appl. Phys. B 81, 209-217 (2005).
[CrossRef]

Iwasaki, A.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215-229 (2003).
[CrossRef]

Jin, W.

Kandidov, V. P.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215-229 (2003).
[CrossRef]

Kaufmann, C.

Kebbel, V.

Khashan, M.

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, "Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber," Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Knight, J. C.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995).
[CrossRef] [PubMed]

Kosareva, O.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215-229 (2003).
[CrossRef]

Kou, L.

Krausz, F.

Labrie, D.

Liao, M.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, "Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber," Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Lipson, M.

Liu, W.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215-229 (2003).
[CrossRef]

Liu, X.

Lubatschowski, H.

Lyytikainen, K.

Martelli, C.

Mourou, G.

Nassif, A.

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Nielsen, K.

Q2. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibers," J. Opt. A 7, L13-L20 (2005).

Nisoli, M.

Noordegraaf, D.

Q2. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibers," J. Opt. A 7, L13-L20 (2005).

Ohishi, Y.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, "Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber," Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, "Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber," Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Ranka, J. K.

Riedle, E.

M. Bradler, P. Baum, and E. Riedle, "Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses," Appl. Phys. B 97, 561-574 (2009).
[CrossRef]

Righini, R.

I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
[CrossRef]

Russell, P.

Q1. P. Russell, "Photonic Crystal Fiber: Finding the Holey Grail," Opt. Photon. News 18, 26-31 (2007).
[CrossRef]

Russell, P. St. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Santa, I.

I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
[CrossRef]

Sartania, S.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

Skibina, N. B.

P. Glas, D. Fischer, G. Steinmeyer, A. Husakou, J. Herrmann, R. Iliew, N. B. Skibina, V. I. Beloglasov and Y. S. Skibina, "Supercontinuum generation in a two-dimensional photonic kagome crystal," Appl. Phys. B 81, 209-217 (2005).
[CrossRef]

Skibina, Y. S.

P. Glas, D. Fischer, G. Steinmeyer, A. Husakou, J. Herrmann, R. Iliew, N. B. Skibina, V. I. Beloglasov and Y. S. Skibina, "Supercontinuum generation in a two-dimensional photonic kagome crystal," Appl. Phys. B 81, 209-217 (2005).
[CrossRef]

Sørensen, T.

Q2. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibers," J. Opt. A 7, L13-L20 (2005).

Spielmann, C.

Squier, J.

Steinmeyer, G.

T. Hansel, G. Steinmeyer, R. Grunwald, C. Falldorf, J. Bonitz, C. Kaufmann, V. Kebbel, and U. Griebner, "Synthesized femtosecond laser pulse source for two-wavelength contouring with simultaneously recorded digital holograms," Opt. Express 17, 2686-2695 (2009).
[CrossRef] [PubMed]

P. Glas, D. Fischer, G. Steinmeyer, A. Husakou, J. Herrmann, R. Iliew, N. B. Skibina, V. I. Beloglasov and Y. S. Skibina, "Supercontinuum generation in a two-dimensional photonic kagome crystal," Appl. Phys. B 81, 209-217 (2005).
[CrossRef]

Stentz, A. J.

Suzuki, T.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, "Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber," Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Svelto, O.

Szip?ocs, R.

Talanov, V. I.

V. I. Bespalov and V. I. Talanov, "Filamentary structure of light beams in nonlinear liquids," JETP Lett. 3, 307- 310 (1966).

Travers, J.

A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, "Supercontinuum generation in a water-core photonic crystal fiber," Opt. Express 16, 9673-9676 (2008).
[CrossRef]

Turner, A. C.

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
[CrossRef]

Williams, J. H.

I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
[CrossRef]

Windeler, R. S.

Xiao, L.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, "Selective filling of photonic crystal fibers," Appl. Phys. Lett. 85, 5182- 5184 (2004).
[CrossRef]

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, "Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber," Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, "Selective filling of photonic crystal fibers," Appl. Phys. Lett. 85, 5182- 5184 (2004).
[CrossRef]

Zhao, C.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (3)

M. Bradler, P. Baum, and E. Riedle, "Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses," Appl. Phys. B 97, 561-574 (2009).
[CrossRef]

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215-229 (2003).
[CrossRef]

P. Glas, D. Fischer, G. Steinmeyer, A. Husakou, J. Herrmann, R. Iliew, N. B. Skibina, V. I. Beloglasov and Y. S. Skibina, "Supercontinuum generation in a two-dimensional photonic kagome crystal," Appl. Phys. B 81, 209-217 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, "Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber," Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, "Selective filling of photonic crystal fibers," Appl. Phys. Lett. 85, 5182- 5184 (2004).
[CrossRef]

J. Opt. A (1)

Q2. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibers," J. Opt. A 7, L13-L20 (2005).

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

I. Santa, P. Foggi, R. Righini, and J. H. Williams, "Time-resolved optical Kerr effect measurements in aqueous ionic solutions," J. Phys. Chem. 98, 7692-7701 (1994).
[CrossRef]

JETP Lett. (1)

V. I. Bespalov and V. I. Talanov, "Filamentary structure of light beams in nonlinear liquids," JETP Lett. 3, 307- 310 (1966).

Opt. Express (6)

Opt. Lett. (5)

Opt. Photon. News (1)

Q1. P. Russell, "Photonic Crystal Fiber: Finding the Holey Grail," Opt. Photon. News 18, 26-31 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J.M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Other (3)

R. R. Alfano, "The Supercontinuum Laser Source," Springer, New York, 2nd edition (2005).

NKT-Photonics datasheet, http://www.nktphotonics.com/files/files/HC-800-01.pdf

G. A. Agrawal, "Nonlinear Fiber Optics," Academic, Boston (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Group velocity dispersion (red solid curve) and loss (blue dashed curve) of a water-filled HC-PCF with a hollow core diameter of 9.5 μ m.

Fig. 2.
Fig. 2.

Evolution of spectrum I (z,λ) (a) and of temporal shape I (z,t) (b) with propagation for 40 fs, 2 TW/cm2 pulses with central wavelength at 1200 nm and waveguide parameters as in Fig. 1.

Fig. 3.
Fig. 3.

Spectrum (a) and temporal shape (b) after 1.6 cm propagation. The parameters are the same as in Fig. 2.

Fig. 4.
Fig. 4.

Evolution of spectrum I (z,λ) (a) and temporal shape I (z,t) (b) with propagation for 40 fs, 50 TW/cm2 pulses with central wavelength at 1200 nm and waveguide parameters as in Fig. 1.

Fig. 5.
Fig. 5.

Spectrum (a) and temporal shape (b) after 0.46 mm for 40 fs, 50 TW/cm2 pulses with central wavelength at 1200 nm.

Fig. 6.
Fig. 6.

Spectra (a),(c),(e) and corresponding temporal shapes (b),(d),(f) for propagation distances of 8 cm (a),(b), 2.4 cm (c),(d), and 0.24 cm (e),(f). The input 40 fs pulses at 1200 nm have a peak intensity of 50 TW/cm2. The fiber geometry corresponds to the experimental cross section. In (c) the incoherence 1-g(λ) is illustrated by the green curve.

Fig. 7.
Fig. 7.

Spectrum (red thick curve) and incoherence function (green thin curve) for the model without the retarded nonlinearity contribution (κslow = 0). The input 40-fs pulses at 1200 nm have a peak intensity of 50 TW/cm2, the propagation distance is 2.4 cm.

Fig. 8.
Fig. 8.

(a) Micrograph of the collapsed fiber as seen from the side. (b) Sketch of the windowed cuvette and the water-filled fiber. Input coupling is from the right. Blue colors indicate water-filled areas, black the aluminum cuvette body, and light gray colors brass fittings that are sealed with the aid of an o-ring. Light is launched into the fiber through a window from the right. The distance between window and collapsed cladding is smaller than the focal length of the lens. No particular measures were taken on the output side on the left.

Fig. 9.
Fig. 9.

(a) Photograph of the supercontinuum generated in the liquid core of the water-filled fiber mounted inside the windowed cuvette. Orientation is as in Fig. 8(b). The grating-dispersed supercontinuum has been projected onto a screen behind the set-up. (b) Micrograph of the rear end of the fiber demonstrating that the core is selectively filled with water.

Fig. 10.
Fig. 10.

Measured spectra of a supercontinuum generated in 7.2 cm of water filled hollow core fiber. (a) Full range on a logarithmic scale. Red colors indicate a background from scattered light, recorded while no light was coupled into the water core. (b) Visible wavelength range on a linear scale.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( z , ω ) z = α ( ω ) 2 E ( z , ω ) + i ( β ( ω ) n g ω c ) E ( z , ω ) + i ω 2 2 β ( ω ) ε 0 c P NL ( z , ω ) ,
P NL ( z , t ) = ε 0 χ 3 E 2 ( z , t ) + κ slow ε 0 χ 3 τ slow E ( z , t ) 0 E 2 ( z , t τ ) exp ( τ / τ slow ) d τ .
g ( λ ) = [ < E a ( λ ) E b * ( λ ) > a , b , a b < E a ( λ ) E b * ( λ ) > a ] ,

Metrics