Abstract

A self-reference, single-shot characterization technique is proposed and demonstrated for simultaneously measuring the instantaneous frequencies and phases of multi-wavelength optical signals using a single processing and detection platform. The technique enables direct real-time optical sampling of the instantaneous frequencies of amplitude and/or phase modulated signals simultaneously at different wavelengths without requiring the use of any optical reference. Simultaneous real-time instantaneous frequency and phase measurements of a chirped 1 GHz-sinusoid intensity modulation signal and a 3 Gbps-PRBS (pseudo-random binary sequence) phase-modulated signal at two different wavelength channels have been performed for the proof-of-concept demonstration.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Saunders, J. P. King, and I. Hardcastle, “Wideband chirp measurement techniques for high bit rate sources,” Electron. Lett. 30(16), 1336–1338 (1994).
    [CrossRef]
  2. R. Monnard, C. R. Doerr, and C. R. Giles, “Real-time dynamic chirp measurements of optical signal,” in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 120–121.
  3. F. P. Romstad, D. Birkedal, J. Mørk, and J. M. Hvam, “Heterodyne Technique for Measuring the amplitude and phase transfer functions of an optical modulator,” IEEE Photon. Technol. Lett. 14(5), 621–623 (2002).
    [CrossRef]
  4. Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightwave Technol. 21(10), 2358–2367 (2003).
    [CrossRef]
  5. C. Laverdière, A. Fekecs, and M. Têtu, “A new method for measuring time-resolved frequency chirp of high bit rate sources,” IEEE Photon. Technol. Lett. 15(3), 446–448 (2003).
    [CrossRef]
  6. C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16(3), 858–860 (2004).
    [CrossRef]
  7. Y. Park, T.-J. Ahn, and J. Azaña, “Direct time-response measurement of high-speed optical modulators based on stretched-pulse interferometry,” Opt. Lett. 32(23), 3411–3413 (2007).
    [CrossRef] [PubMed]
  8. F. Li, Y. Park, and J. Azaña, “Complete temporal pulse characterization based on phase reconstruction using optical ultrafast differentiation (PROUD),” Opt. Lett. 32(22), 3364–3366 (2007).
    [CrossRef] [PubMed]
  9. C. Dorrer, “Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning,” Opt. Lett. 31(4), 540–542 (2006).
    [CrossRef] [PubMed]
  10. Y. Park, T.-J. Ahn, and J. Azaña, “Real-time complex temporal response measurements of ultrahigh-speed optical modulators,” Opt. Express 17(3), 1734–1745 (2009).
    [CrossRef] [PubMed]
  11. F. Li, Y. Park, and J. Azaña, “Single-shot real-time frequency chirp characterization of telecommunication optical signals based on balanced temporal optical differentiation,” Opt. Lett. 34(18), 2742–2744 (2009).
    [CrossRef] [PubMed]
  12. N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
    [CrossRef] [PubMed]
  13. E. Ip, A. P. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  14. R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, “Ultrafast all-optical differentiators,” Opt. Express 14(22), 10699–10707 (2006).
    [CrossRef] [PubMed]
  15. L.-M. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultra-broadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(16), 1209–1211 (2007).
    [CrossRef]
  16. Y. Park, J. Azaña, and R. Slavík, “Ultrafast all-optical first- and higher-order differentiators based on interferometers,” Opt. Lett. 32(6), 710–712 (2007).
    [CrossRef] [PubMed]
  17. Y. Takahashi, A. Neogi, and H. Kawaguchi, “Polarization-Dependent Nonlinear Gain in Semiconductor Lasers,” IEEE J. Quantum Electron. 34(9), 1660–1672 (1998).
    [CrossRef]
  18. http://www.jdsu.com/product-literature/52055206itla_ds_cms_ae.pdf .

2009 (3)

2008 (1)

2007 (4)

2006 (2)

2004 (1)

C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16(3), 858–860 (2004).
[CrossRef]

2003 (2)

Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightwave Technol. 21(10), 2358–2367 (2003).
[CrossRef]

C. Laverdière, A. Fekecs, and M. Têtu, “A new method for measuring time-resolved frequency chirp of high bit rate sources,” IEEE Photon. Technol. Lett. 15(3), 446–448 (2003).
[CrossRef]

2002 (1)

F. P. Romstad, D. Birkedal, J. Mørk, and J. M. Hvam, “Heterodyne Technique for Measuring the amplitude and phase transfer functions of an optical modulator,” IEEE Photon. Technol. Lett. 14(5), 621–623 (2002).
[CrossRef]

1998 (1)

Y. Takahashi, A. Neogi, and H. Kawaguchi, “Polarization-Dependent Nonlinear Gain in Semiconductor Lasers,” IEEE J. Quantum Electron. 34(9), 1660–1672 (1998).
[CrossRef]

1994 (1)

R. A. Saunders, J. P. King, and I. Hardcastle, “Wideband chirp measurement techniques for high bit rate sources,” Electron. Lett. 30(16), 1336–1338 (1994).
[CrossRef]

Ahn, T.-J.

Azaña, J.

Barros, D. J.

Birkedal, D.

F. P. Romstad, D. Birkedal, J. Mørk, and J. M. Hvam, “Heterodyne Technique for Measuring the amplitude and phase transfer functions of an optical modulator,” IEEE Photon. Technol. Lett. 14(5), 621–623 (2002).
[CrossRef]

Carballar, A.

L.-M. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultra-broadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(16), 1209–1211 (2007).
[CrossRef]

Dorrer, C.

C. Dorrer, “Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning,” Opt. Lett. 31(4), 540–542 (2006).
[CrossRef] [PubMed]

C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16(3), 858–860 (2004).
[CrossRef]

Fekecs, A.

C. Laverdière, A. Fekecs, and M. Têtu, “A new method for measuring time-resolved frequency chirp of high bit rate sources,” IEEE Photon. Technol. Lett. 15(3), 446–448 (2003).
[CrossRef]

Fontaine, N. K.

Hardcastle, I.

R. A. Saunders, J. P. King, and I. Hardcastle, “Wideband chirp measurement techniques for high bit rate sources,” Electron. Lett. 30(16), 1336–1338 (1994).
[CrossRef]

Heritage, J. P.

Hvam, J. M.

F. P. Romstad, D. Birkedal, J. Mørk, and J. M. Hvam, “Heterodyne Technique for Measuring the amplitude and phase transfer functions of an optical modulator,” IEEE Photon. Technol. Lett. 14(5), 621–623 (2002).
[CrossRef]

Ip, E.

Kahn, J. M.

Kang, I.

C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16(3), 858–860 (2004).
[CrossRef]

Kawaguchi, H.

Y. Takahashi, A. Neogi, and H. Kawaguchi, “Polarization-Dependent Nonlinear Gain in Semiconductor Lasers,” IEEE J. Quantum Electron. 34(9), 1660–1672 (1998).
[CrossRef]

King, J. P.

R. A. Saunders, J. P. King, and I. Hardcastle, “Wideband chirp measurement techniques for high bit rate sources,” Electron. Lett. 30(16), 1336–1338 (1994).
[CrossRef]

Kulishov, M.

Lau, A. P.

Laverdière, C.

C. Laverdière, A. Fekecs, and M. Têtu, “A new method for measuring time-resolved frequency chirp of high bit rate sources,” IEEE Photon. Technol. Lett. 15(3), 446–448 (2003).
[CrossRef]

Li, F.

Morandotti, R.

Mørk, J.

F. P. Romstad, D. Birkedal, J. Mørk, and J. M. Hvam, “Heterodyne Technique for Measuring the amplitude and phase transfer functions of an optical modulator,” IEEE Photon. Technol. Lett. 14(5), 621–623 (2002).
[CrossRef]

Neogi, A.

Y. Takahashi, A. Neogi, and H. Kawaguchi, “Polarization-Dependent Nonlinear Gain in Semiconductor Lasers,” IEEE J. Quantum Electron. 34(9), 1660–1672 (1998).
[CrossRef]

Park, Y.

Rivas, L.-M.

L.-M. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultra-broadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(16), 1209–1211 (2007).
[CrossRef]

Romstad, F. P.

F. P. Romstad, D. Birkedal, J. Mørk, and J. M. Hvam, “Heterodyne Technique for Measuring the amplitude and phase transfer functions of an optical modulator,” IEEE Photon. Technol. Lett. 14(5), 621–623 (2002).
[CrossRef]

Saunders, R. A.

R. A. Saunders, J. P. King, and I. Hardcastle, “Wideband chirp measurement techniques for high bit rate sources,” Electron. Lett. 30(16), 1336–1338 (1994).
[CrossRef]

Scott, R. P.

Shi, Y.

Singh, K.

L.-M. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultra-broadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(16), 1209–1211 (2007).
[CrossRef]

Slavík, R.

Takahashi, Y.

Y. Takahashi, A. Neogi, and H. Kawaguchi, “Polarization-Dependent Nonlinear Gain in Semiconductor Lasers,” IEEE J. Quantum Electron. 34(9), 1660–1672 (1998).
[CrossRef]

Têtu, M.

C. Laverdière, A. Fekecs, and M. Têtu, “A new method for measuring time-resolved frequency chirp of high bit rate sources,” IEEE Photon. Technol. Lett. 15(3), 446–448 (2003).
[CrossRef]

Willner, A. E.

Yan, L.

Yoo, S. J. B.

Electron. Lett. (1)

R. A. Saunders, J. P. King, and I. Hardcastle, “Wideband chirp measurement techniques for high bit rate sources,” Electron. Lett. 30(16), 1336–1338 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Takahashi, A. Neogi, and H. Kawaguchi, “Polarization-Dependent Nonlinear Gain in Semiconductor Lasers,” IEEE J. Quantum Electron. 34(9), 1660–1672 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

L.-M. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultra-broadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(16), 1209–1211 (2007).
[CrossRef]

F. P. Romstad, D. Birkedal, J. Mørk, and J. M. Hvam, “Heterodyne Technique for Measuring the amplitude and phase transfer functions of an optical modulator,” IEEE Photon. Technol. Lett. 14(5), 621–623 (2002).
[CrossRef]

C. Laverdière, A. Fekecs, and M. Têtu, “A new method for measuring time-resolved frequency chirp of high bit rate sources,” IEEE Photon. Technol. Lett. 15(3), 446–448 (2003).
[CrossRef]

C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16(3), 858–860 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (5)

Other (2)

R. Monnard, C. R. Doerr, and C. R. Giles, “Real-time dynamic chirp measurements of optical signal,” in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 120–121.

http://www.jdsu.com/product-literature/52055206itla_ds_cms_ae.pdf .

Supplementary Material (2)

» Media 1: AVI (1226 KB)     
» Media 2: AVI (1155 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Principle of multi-wavelength balanced differentiation. (b) Experimental diagram for measuring the instantaneous frequencies of two wavelength channels based on the multi-wavelength balanced PROUD technique.

Fig. 2
Fig. 2

Persistent-mode acquisition of the instantaneous frequencies of phase (b) and amplitude (c) modulated signals. (a) A full-scale view of the direct simultaneous acquisition of the instantaneous frequencies at two different wavelength channels. Magnified images of the instantaneous frequencies of the phase-modulated (b) and the amplitude modulated and amplified (c) signals.

Fig. 3
Fig. 3

Direct single-shot measurements of the instantaneous frequency profiles with properly scaled frequency axex are shown in real time at 3 fps. (a) a full-scale view of the direct simultaneous acquisition of the instantaneous frequencies at two different wavelength channels. (b) instantaneous frequency of the phase modulated signal. (c) instantaneous frequency of the amplitude modulated and amplified signal. (Media 1)

Fig. 4
Fig. 4

Direct single-shot measurement of the instantaneous frequency and phase profiles is shown in real time at 3 fps: Direct simultaneous acquisition of the calibrated instantaneous frequencies at two different wavelength channels for (a) the phase modulation and (b) the amplitude modulation. Instantaneous phases directly calculated from the instantaneous frequencies for the phase modulation (c) and the amplitude modulation (d), respectively. (Media 2)

Fig. 5
Fig. 5

Numerical evaluation of the dual-balanced differentiation technique as a function of the carrier frequency shift with respect to the crossing point of the MZI transfer functions. (a) total_error. (b) maximum_distortion.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ± ( t ) = | | s ( t ) | t | 2 + | s ( t ) | 2 ( φ s ( t ) t ± Δ ω ) 2
i B D ( t ) | s ( t ) | 2 2 π φ s ( t ) t
( i B D i o u t ) ω i = 2 π c k A 2 l φ s t
f 0 = l 4 π 2 c k A 2 ( i B D i o u t ) ω i
( i B D i o u t ) Δ ω = 2 π c k A 2 l [ Δ ω + φ s t ]
f ' = l 4 π 2 c k A 2 ( i B D i o u t ) Δ ω = 1 2 π Δ ω + f 0

Metrics