Abstract

We propose and demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator microring resonators. The phase-shifting range and the RF-power variation are analyzed. A maximum phase-shifting range of 0~600° is achieved by utilizing a dual-microring resonator. A quasi-linear phase shift of 360° with RF-power variation lower than 2dB and a continuous 270° phase shift without RF-power variation at a microwave frequency of 40GHz are also demonstrated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  2. S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
    [CrossRef]
  3. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
    [CrossRef]
  4. M. Fisher and S. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
    [CrossRef]
  5. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
    [CrossRef]
  6. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
    [CrossRef] [PubMed]
  7. W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008).
    [CrossRef] [PubMed]
  8. M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7145 .
    [CrossRef] [PubMed]
  9. L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34(18), 2757–2759 (2009).
    [CrossRef] [PubMed]
  10. Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator,” IEEE Photon. Technol. Lett. 21(1), 60–62 (2009).
    [CrossRef]
  11. M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator,” submitted toIEEE Photon. Technol. Lett.
  12. J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [CrossRef]
  13. W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” IEEE Photon. Technol. Lett. 21(3), 167–169 (2009).
    [CrossRef]
  14. J. Heebner, A. Vincent Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
    [CrossRef]
  15. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
    [CrossRef]
  16. M. Pu, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Low Insertion Loss SOI Microring Resonator Integrated with Nano-Taper Couplers,” The Conference on Frontiers in Optics (FiO) 2009, FThE1 (2009).

2009 (4)

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator,” IEEE Photon. Technol. Lett. 21(1), 60–62 (2009).
[CrossRef]

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” IEEE Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
[CrossRef] [PubMed]

L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34(18), 2757–2759 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

2006 (4)

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

M. Fisher and S. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[CrossRef]

2005 (2)

2004 (1)

J. Heebner, A. Vincent Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Alkeskjold, T. T.

Bjarklev, A.

Boyd, R. W.

J. Heebner, A. Vincent Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Capmany, J.

Chang, Q.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator,” IEEE Photon. Technol. Lett. 21(1), 60–62 (2009).
[CrossRef]

Chazelas, J.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Chen, Y.

Chuang, S.

M. Fisher and S. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
[CrossRef]

Ding, Y.

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator,” submitted toIEEE Photon. Technol. Lett.

Dolfi, D.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Fisher, M.

M. Fisher and S. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
[CrossRef]

Formont, S.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Frandsen, L. H.

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator,” submitted toIEEE Photon. Technol. Lett.

Heebner, J.

J. Heebner, A. Vincent Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Huignard, J. P.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Hvam, J. M.

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator,” submitted toIEEE Photon. Technol. Lett.

Jackson, D. J.

J. Heebner, A. Vincent Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Joannopoulos, J.

Johnson, S.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Li, Q.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator,” IEEE Photon. Technol. Lett. 21(1), 60–62 (2009).
[CrossRef]

Liu, L.

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator,” submitted toIEEE Photon. Technol. Lett.

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Monsterleet, A.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Mork, J.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” IEEE Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

Mørk, J.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Öhman, F.

Ortega, B.

Ou, H.

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator,” submitted toIEEE Photon. Technol. Lett.

Pastor, D.

Povinelli, M.

Pu, M.

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator,” submitted toIEEE Photon. Technol. Lett.

Qiu, M.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator,” IEEE Photon. Technol. Lett. 21(1), 60–62 (2009).
[CrossRef]

Sales, S.

Schweinsberg, A.

J. Heebner, A. Vincent Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Su, Y.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator,” IEEE Photon. Technol. Lett. 21(1), 60–62 (2009).
[CrossRef]

Tonda-Goldstein, S.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Vincent Wong, A.

J. Heebner, A. Vincent Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Wei, L.

Xue, W.

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Ye, T.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator,” IEEE Photon. Technol. Lett. 21(1), 60–62 (2009).
[CrossRef]

Yvind, K.

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator,” submitted toIEEE Photon. Technol. Lett.

Zhang, Z.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator,” IEEE Photon. Technol. Lett. 21(1), 60–62 (2009).
[CrossRef]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Heebner, A. Vincent Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

M. Fisher and S. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator,” IEEE Photon. Technol. Lett. 21(1), 60–62 (2009).
[CrossRef]

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator,” submitted toIEEE Photon. Technol. Lett.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” IEEE Photon. Technol. Lett. 21(3), 167–169 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (1)

M. Pu, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Low Insertion Loss SOI Microring Resonator Integrated with Nano-Taper Couplers,” The Conference on Frontiers in Optics (FiO) 2009, FThE1 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic layout of an RF phase shifter

Fig. 2
Fig. 2

Schematic of an all-pass single MRR.

Fig. 3
Fig. 3

Optical intensity transmission (a) and phase shift (b) as a function of the detuning (ω-ωMRR) at the through port for the MRRs with different coupling coefficients κ. RF power (c) and RF phase shift (d) for the MRRs as a function of the detuning (ωMRR0) at a RF frequency of 40GHz with different coupling coefficients κ. All the insets are the zoomed view for a detuning range from −20GHz to 20GHz. (e) The maximum RF phase shift versus the RF frequency for the MRRs with different coupling coefficients κ.

Fig. 4
Fig. 4

Schematic of an all-pass DMRR.

Fig. 5
Fig. 5

Optical intensity transmission (a) and phase shift (c) as a function of the detuning (ω-ωMRR1) for the DMRR with different resonance offsets (ωMRR2MRR1). RF power (b) and RF phase shift (d) as a function of the detuning (ωMRR10) at an RF frequency of 40GHz. Insets are zoomed views for the DMRR with 3GHz resonance offset for a detuning range from −1GHz to 4GHz. Here, κ2, a2 are always assumed to be 0.04 and 0.995, respectively.

Fig. 6
Fig. 6

Contour plots of RF phase shift for a 40GHz signal (in degrees, color-shaded contours) and RF power (in decibels, black-curve contours) as a function of the detuning of resonance frequencies (ωMRR1 and ωMRR2) from the optical carrier frequency (ω0) for tdhe DMRRs with power coupling coefficient κ2 of 0.04 (a) and 0.3 (b), respectively.

Fig. 7
Fig. 7

Maximum RF phase shift and RF power level for constant-power operation as a function of the power coupling coefficient κ2.

Fig. 8
Fig. 8

(a) Schematic diagram of the tunable MRR with micro heater. (b) Top-view microscope picture of the fabricated tunable MRR with micro heater.

Fig. 9
Fig. 9

(a) Measured transmission spectrum with different applied power on the micro heater for the MRR. (b) Measured resonance shift versus the applied power on the micro heater.

Fig. 10
Fig. 10

(a) Experimental setup for phase-shift measurements. (b) Optical microscope picture of the fabricated dual-microring resonator with micro heater.

Fig. 11
Fig. 11

(a) Measured transmission spectrum of the DMRR with different applied power on the micro heater for MRR1. (b) Measured transmission spectrum of the DMRR with additional applied power on both micro heaters (see the color curves) and the generated 40GHz microwave signal with carrier wavelength of 1539nm (see the black curve). Here, 0.8mW power is initially applied on micro heater for MRR1.

Fig. 12
Fig. 12

Measured RF phase shift and RF power versus the power applied to the two micro heaters for the DMRR with a coupling gap of 150nm (a) and 100nm (b). Measured maximum RF phase shift (c) and RF power drop (d) for the DMRRs with different power coupling coefficients.

Fig. 13
Fig. 13

Contour plots of measured RF phase shift (in degrees, color-shaded contours) and RF power (in decibels, black-curve contours) as a function of the powers applied to the two micro heaters for the DMRR with a coupling gap of 150nm (a) and 100nm (b). The dotted lines represent the RF phase shifting operations in Figs. 12(a) and 12(b), respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = A 0 exp ( j ω 0 t ) + A 1 exp [ j ( ω 0 + ω r f ) t ]
E ' ( t ) = A 0 A ' 0 exp ( j ω 0 t ) · exp ( j θ 0 ) + A 1 A ' 1 exp [ j ( ω 0 + ω r f ) t ] · exp ( j θ 1 )
i A C ( t ) A 0 A ' 0 A 1 A ' 1 cos [ ω r f t + ( θ 0 θ 1 ) ]
E o u t E i n = r a e j ϕ 1 a r e j ϕ
Φ = π + ϕ + tan 1 r sin ϕ a r cos ϕ + tan 1 a r sin ϕ 1 a r cos ϕ

Metrics