Abstract

Direct pulse shaping in the UV was used to compress and structure pulses throughout the range of 250 – 400 nm. Broadband pulses generated by SHG of a NOPA were used as input to an acousto-optic programmable dispersive filter. As this shaper creates lateral dispersion, aspects of Gaussian and geometric optics had to be considered for the design of the beam path. Special care was taken to produce a homogeneous input beam. We show nearly Fourier-limited pulses as short as 16.8 fs at 320 nm and 19.5 fs at 260 nm. Full control over amplitude and phase is demonstrated by generating arbitrary shapes like square pulses and complex pulse sequences. The subpulses were manipulated individually in intensity, temporal delay, chirp, relative phase and central wavelength.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29(14), 1686–1688 (2004).
    [CrossRef] [PubMed]
  2. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 (2009).
    [CrossRef] [PubMed]
  3. T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem 4(5), 418–438 (2003).
    [CrossRef] [PubMed]
  4. H. Rabitz, M. Motzkus, K. Kompa, and R. de Vivie-Riedle, “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
    [CrossRef] [PubMed]
  5. S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
    [CrossRef] [PubMed]
  6. A. W. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [CrossRef]
  7. M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14(9), 2348–2358 (1997).
    [CrossRef]
  8. A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81(2-3), 177–180 (2005).
    [CrossRef]
  9. T. Tanigawa, Y. Sakakibara, S. Fang, T. Sekikawa, and M. Yamashita, “Spatial light modulator of 648 pixels with liquid crystal transparent from ultraviolet to near-infrared and its chirp compensation application,” Opt. Lett. 34(11), 1696–1698 (2009).
    [CrossRef] [PubMed]
  10. M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
    [CrossRef]
  11. D. S. N. Parker, A. D. G. Nunn, R. S. Minns, and H. H. Fielding, “Frequency doubling and Fourier domain shaping the output of a femtosecond optical parametric amplifier: easy access to tuneable femtosecond pulse shapes in the deep ultraviolet,” Appl. Phys. B 94(2), 181–186 (2009).
    [CrossRef]
  12. C. Schriever, S. Lochbrunner, M. Optiz, and E. Riedle, “19 fs shaped ultraviolet pulses,” Opt. Lett. 31(4), 543–545 (2006).
    [CrossRef] [PubMed]
  13. P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88(4), 519–526 (2007).
    [CrossRef]
  14. A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J.-P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96(4), 757–761 (2009).
    [CrossRef]
  15. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711–714 (2003).
  16. J. Möhring, T. Buckup, C. S. Lehmann, and M. Motzkus, “Generation of phase-controlled ultraviolet pulses and characterization by a simple autocorrelator setup,” J. Opt. Soc. Am. B 26(8), 1538–1544 (2009).
    [CrossRef]
  17. B. J. Pearson and T. C. Weinacht, “Shaped ultrafast laser pulses in the deep ultraviolet,” Opt. Express 15(7), 4385–4388 (2007).
    [CrossRef] [PubMed]
  18. S. Coudreau, D. Kaplan, and P. Tournois, “Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP,” Opt. Lett. 31(12), 1899–1901 (2006).
    [CrossRef] [PubMed]
  19. S. Weber, M. Barthélemy, and B. Chatel, “Direct shaping of tunable UV ultra-short pulses,” Appl. Phys. B 98(2-3), 323–326 (2010).
    [CrossRef]
  20. J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
    [CrossRef]
  21. V. Petrov, F. Noack, W. Rudolph, and C. Rempel, ““Intracavity Dispersion Compensation and Extracavity Pulse Compression Using Pairs of Prisms”, Exp,” Tech. Phys. 36, 167–173 (1988).
  22. P. Baum, S. Lochbrunner, and E. Riedle, “Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses,” Opt. Lett. 29(2), 210–212 (2004).
    [CrossRef] [PubMed]
  23. P. Baum, M. Breuer, E. Riedle, and G. Steinmeyer, “Brewster-angled chirped mirrors for broadband pulse compression without dispersion oscillations,” Opt. Lett. 31(14), 2220–2222 (2006).
    [CrossRef] [PubMed]
  24. I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75(7), 2323–2327 (2004).
    [CrossRef]
  25. M. M. Wefers and K. A. Nelson, “Space-Time Profiles of Shaped Ultrafast Optical Waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
    [CrossRef]
  26. M. V. Klein, and T. E. Furtak, Optics, (John Wiley & Sons, New York, 1986), Chap. 7, p. 477.
    [PubMed]
  27. F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130(3), 034302 (2009).
    [CrossRef] [PubMed]
  28. D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, “Femtosecond ultraviolet pulse generation in β-BaB2O4,” Appl. Phys. Lett. 52(26), 2211–2213 (1988).
    [CrossRef]
  29. J. C. Vaughan, T. Feurer, K. W. Stone, and K. A. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express 14(3), 1314–1328 (2006).
    [CrossRef] [PubMed]

2010

S. Weber, M. Barthélemy, and B. Chatel, “Direct shaping of tunable UV ultra-short pulses,” Appl. Phys. B 98(2-3), 323–326 (2010).
[CrossRef]

2009

D. S. N. Parker, A. D. G. Nunn, R. S. Minns, and H. H. Fielding, “Frequency doubling and Fourier domain shaping the output of a femtosecond optical parametric amplifier: easy access to tuneable femtosecond pulse shapes in the deep ultraviolet,” Appl. Phys. B 94(2), 181–186 (2009).
[CrossRef]

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130(3), 034302 (2009).
[CrossRef] [PubMed]

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[CrossRef] [PubMed]

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J.-P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96(4), 757–761 (2009).
[CrossRef]

T. Tanigawa, Y. Sakakibara, S. Fang, T. Sekikawa, and M. Yamashita, “Spatial light modulator of 648 pixels with liquid crystal transparent from ultraviolet to near-infrared and its chirp compensation application,” Opt. Lett. 34(11), 1696–1698 (2009).
[CrossRef] [PubMed]

J. Möhring, T. Buckup, C. S. Lehmann, and M. Motzkus, “Generation of phase-controlled ultraviolet pulses and characterization by a simple autocorrelator setup,” J. Opt. Soc. Am. B 26(8), 1538–1544 (2009).
[CrossRef]

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 (2009).
[CrossRef] [PubMed]

2007

B. J. Pearson and T. C. Weinacht, “Shaped ultrafast laser pulses in the deep ultraviolet,” Opt. Express 15(7), 4385–4388 (2007).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88(4), 519–526 (2007).
[CrossRef]

2006

2005

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81(2-3), 177–180 (2005).
[CrossRef]

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
[CrossRef]

2004

2003

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711–714 (2003).

T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem 4(5), 418–438 (2003).
[CrossRef] [PubMed]

2000

H. Rabitz, M. Motzkus, K. Kompa, and R. de Vivie-Riedle, “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
[CrossRef] [PubMed]

A. W. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

1997

1996

M. M. Wefers and K. A. Nelson, “Space-Time Profiles of Shaped Ultrafast Optical Waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[CrossRef]

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[CrossRef]

1988

V. Petrov, F. Noack, W. Rudolph, and C. Rempel, ““Intracavity Dispersion Compensation and Extracavity Pulse Compression Using Pairs of Prisms”, Exp,” Tech. Phys. 36, 167–173 (1988).

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, “Femtosecond ultraviolet pulse generation in β-BaB2O4,” Appl. Phys. Lett. 52(26), 2211–2213 (1988).
[CrossRef]

Arbouet, A.

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81(2-3), 177–180 (2005).
[CrossRef]

Barman, A.

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81(2-3), 177–180 (2005).
[CrossRef]

Bartelt, A.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
[CrossRef]

Barthélemy, M.

S. Weber, M. Barthélemy, and B. Chatel, “Direct shaping of tunable UV ultra-short pulses,” Appl. Phys. B 98(2-3), 323–326 (2010).
[CrossRef]

Baum, P.

Bonacina, L.

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J.-P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96(4), 757–761 (2009).
[CrossRef]

Bosenberg, W. R.

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, “Femtosecond ultraviolet pulse generation in β-BaB2O4,” Appl. Phys. Lett. 52(26), 2211–2213 (1988).
[CrossRef]

Breuer, M.

Brixner, T.

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88(4), 519–526 (2007).
[CrossRef]

T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem 4(5), 418–438 (2003).
[CrossRef] [PubMed]

Buckup, T.

J. Möhring, T. Buckup, C. S. Lehmann, and M. Motzkus, “Generation of phase-controlled ultraviolet pulses and characterization by a simple autocorrelator setup,” J. Opt. Soc. Am. B 26(8), 1538–1544 (2009).
[CrossRef]

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711–714 (2003).

Chatel, B.

S. Weber, M. Barthélemy, and B. Chatel, “Direct shaping of tunable UV ultra-short pulses,” Appl. Phys. B 98(2-3), 323–326 (2010).
[CrossRef]

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81(2-3), 177–180 (2005).
[CrossRef]

Cheng, L. K.

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, “Femtosecond ultraviolet pulse generation in β-BaB2O4,” Appl. Phys. Lett. 52(26), 2211–2213 (1988).
[CrossRef]

Coudreau, S.

de Vivie-Riedle, R.

H. Rabitz, M. Motzkus, K. Kompa, and R. de Vivie-Riedle, “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
[CrossRef] [PubMed]

Dugan, M. A.

Edelstein, D. C.

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, “Femtosecond ultraviolet pulse generation in β-BaB2O4,” Appl. Phys. Lett. 52(26), 2211–2213 (1988).
[CrossRef]

Extermann, J.

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J.-P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96(4), 757–761 (2009).
[CrossRef]

Fang, S.

Fechner, S.

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88(4), 519–526 (2007).
[CrossRef]

Feurer, T.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130(3), 034302 (2009).
[CrossRef] [PubMed]

J. C. Vaughan, T. Feurer, K. W. Stone, and K. A. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express 14(3), 1314–1328 (2006).
[CrossRef] [PubMed]

Fielding, H. H.

D. S. N. Parker, A. D. G. Nunn, R. S. Minns, and H. H. Fielding, “Frequency doubling and Fourier domain shaping the output of a femtosecond optical parametric amplifier: easy access to tuneable femtosecond pulse shapes in the deep ultraviolet,” Appl. Phys. B 94(2), 181–186 (2009).
[CrossRef]

Frei, F.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130(3), 034302 (2009).
[CrossRef] [PubMed]

Galler, A.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130(3), 034302 (2009).
[CrossRef] [PubMed]

Gehner, A.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711–714 (2003).

Gerber, G.

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88(4), 519–526 (2007).
[CrossRef]

T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem 4(5), 418–438 (2003).
[CrossRef] [PubMed]

Girard, B.

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81(2-3), 177–180 (2005).
[CrossRef]

Hacker, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711–714 (2003).

Hebling, J.

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[CrossRef]

Herrmann, D.

Kaplan, D.

S. Coudreau, D. Kaplan, and P. Tournois, “Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP,” Opt. Lett. 31(12), 1899–1901 (2006).
[CrossRef] [PubMed]

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81(2-3), 177–180 (2005).
[CrossRef]

Kompa, K.

H. Rabitz, M. Motzkus, K. Kompa, and R. de Vivie-Riedle, “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
[CrossRef] [PubMed]

Kozma, I. Z.

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75(7), 2323–2327 (2004).
[CrossRef]

Krausz, F.

Lehmann, C. S.

Lochbrunner, S.

Mehendale, M.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
[CrossRef]

Minns, R. S.

D. S. N. Parker, A. D. G. Nunn, R. S. Minns, and H. H. Fielding, “Frequency doubling and Fourier domain shaping the output of a femtosecond optical parametric amplifier: easy access to tuneable femtosecond pulse shapes in the deep ultraviolet,” Appl. Phys. B 94(2), 181–186 (2009).
[CrossRef]

Möhring, J.

Monmayrant, A.

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81(2-3), 177–180 (2005).
[CrossRef]

Motzkus, M.

J. Möhring, T. Buckup, C. S. Lehmann, and M. Motzkus, “Generation of phase-controlled ultraviolet pulses and characterization by a simple autocorrelator setup,” J. Opt. Soc. Am. B 26(8), 1538–1544 (2009).
[CrossRef]

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711–714 (2003).

H. Rabitz, M. Motzkus, K. Kompa, and R. de Vivie-Riedle, “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
[CrossRef] [PubMed]

Nelson, K. A.

J. C. Vaughan, T. Feurer, K. W. Stone, and K. A. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express 14(3), 1314–1328 (2006).
[CrossRef] [PubMed]

M. M. Wefers and K. A. Nelson, “Space-Time Profiles of Shaped Ultrafast Optical Waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[CrossRef]

Noack, F.

V. Petrov, F. Noack, W. Rudolph, and C. Rempel, ““Intracavity Dispersion Compensation and Extracavity Pulse Compression Using Pairs of Prisms”, Exp,” Tech. Phys. 36, 167–173 (1988).

Nuernberger, P.

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88(4), 519–526 (2007).
[CrossRef]

Nunn, A. D. G.

D. S. N. Parker, A. D. G. Nunn, R. S. Minns, and H. H. Fielding, “Frequency doubling and Fourier domain shaping the output of a femtosecond optical parametric amplifier: easy access to tuneable femtosecond pulse shapes in the deep ultraviolet,” Appl. Phys. B 94(2), 181–186 (2009).
[CrossRef]

Optiz, M.

Parker, D. S. N.

D. S. N. Parker, A. D. G. Nunn, R. S. Minns, and H. H. Fielding, “Frequency doubling and Fourier domain shaping the output of a femtosecond optical parametric amplifier: easy access to tuneable femtosecond pulse shapes in the deep ultraviolet,” Appl. Phys. B 94(2), 181–186 (2009).
[CrossRef]

Pearson, B. J.

Pervak, V.

Petrov, V.

V. Petrov, F. Noack, W. Rudolph, and C. Rempel, ““Intracavity Dispersion Compensation and Extracavity Pulse Compression Using Pairs of Prisms”, Exp,” Tech. Phys. 36, 167–173 (1988).

Rabitz, H.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
[CrossRef]

H. Rabitz, M. Motzkus, K. Kompa, and R. de Vivie-Riedle, “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
[CrossRef] [PubMed]

Rempel, C.

V. Petrov, F. Noack, W. Rudolph, and C. Rempel, ““Intracavity Dispersion Compensation and Extracavity Pulse Compression Using Pairs of Prisms”, Exp,” Tech. Phys. 36, 167–173 (1988).

Riedle, E.

Rondi, A.

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J.-P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96(4), 757–761 (2009).
[CrossRef]

Roth, M.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
[CrossRef]

Rudolph, W.

V. Petrov, F. Noack, W. Rudolph, and C. Rempel, ““Intracavity Dispersion Compensation and Extracavity Pulse Compression Using Pairs of Prisms”, Exp,” Tech. Phys. 36, 167–173 (1988).

Sakakibara, Y.

Sauerbrey, R.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711–714 (2003).

Schmid, K.

Schmidhammer, U.

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75(7), 2323–2327 (2004).
[CrossRef]

Schriever, C.

Sekikawa, T.

Selle, R.

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88(4), 519–526 (2007).
[CrossRef]

Shim, S.-H.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[CrossRef] [PubMed]

Steinmeyer, G.

Stobrawa, G.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711–714 (2003).

Stone, K. W.

Tang, C. L.

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, “Femtosecond ultraviolet pulse generation in β-BaB2O4,” Appl. Phys. Lett. 52(26), 2211–2213 (1988).
[CrossRef]

Tanigawa, T.

Tautz, R.

Tavella, F.

Tournois, P.

Tull, J. X.

Vaughan, J. C.

Veisz, L.

Vogt, G.

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88(4), 519–526 (2007).
[CrossRef]

Wachman, E. S.

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, “Femtosecond ultraviolet pulse generation in β-BaB2O4,” Appl. Phys. Lett. 52(26), 2211–2213 (1988).
[CrossRef]

Warren, W. S.

Weber, S.

S. Weber, M. Barthélemy, and B. Chatel, “Direct shaping of tunable UV ultra-short pulses,” Appl. Phys. B 98(2-3), 323–326 (2010).
[CrossRef]

Weber, S. M.

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J.-P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96(4), 757–761 (2009).
[CrossRef]

Wefers, M. M.

M. M. Wefers and K. A. Nelson, “Space-Time Profiles of Shaped Ultrafast Optical Waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[CrossRef]

Weinacht, T. C.

Weiner, A. W.

A. W. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Whitaker, B. J.

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81(2-3), 177–180 (2005).
[CrossRef]

Wildenhain, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711–714 (2003).

Wolf, J.-P.

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J.-P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96(4), 757–761 (2009).
[CrossRef]

Yamashita, M.

Zanni, M. T.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[CrossRef] [PubMed]

Appl. Phys. B

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, “AOPDF-shaped optical parametric amplifier output in the visible,” Appl. Phys. B 81(2-3), 177–180 (2005).
[CrossRef]

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88(4), 519–526 (2007).
[CrossRef]

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J.-P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96(4), 757–761 (2009).
[CrossRef]

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711–714 (2003).

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
[CrossRef]

D. S. N. Parker, A. D. G. Nunn, R. S. Minns, and H. H. Fielding, “Frequency doubling and Fourier domain shaping the output of a femtosecond optical parametric amplifier: easy access to tuneable femtosecond pulse shapes in the deep ultraviolet,” Appl. Phys. B 94(2), 181–186 (2009).
[CrossRef]

S. Weber, M. Barthélemy, and B. Chatel, “Direct shaping of tunable UV ultra-short pulses,” Appl. Phys. B 98(2-3), 323–326 (2010).
[CrossRef]

Appl. Phys. Lett.

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, and C. L. Tang, “Femtosecond ultraviolet pulse generation in β-BaB2O4,” Appl. Phys. Lett. 52(26), 2211–2213 (1988).
[CrossRef]

ChemPhysChem

T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem 4(5), 418–438 (2003).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

M. M. Wefers and K. A. Nelson, “Space-Time Profiles of Shaped Ultrafast Optical Waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[CrossRef]

J. Chem. Phys.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130(3), 034302 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[CrossRef]

Phys. Chem. Chem. Phys.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

A. W. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75(7), 2323–2327 (2004).
[CrossRef]

Science

H. Rabitz, M. Motzkus, K. Kompa, and R. de Vivie-Riedle, “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000).
[CrossRef] [PubMed]

Tech. Phys.

V. Petrov, F. Noack, W. Rudolph, and C. Rempel, ““Intracavity Dispersion Compensation and Extracavity Pulse Compression Using Pairs of Prisms”, Exp,” Tech. Phys. 36, 167–173 (1988).

Other

M. V. Klein, and T. E. Furtak, Optics, (John Wiley & Sons, New York, 1986), Chap. 7, p. 477.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup for the generation and characterization of shaped UV-pulses. PC: prism compressor; SHG (DFG): second harmonic (difference frequency) generation; λ/2: half-wave plate; M1 to M3: spherical focusing mirrors; L1 and L2: lenses; IBW: intermediate beam waist.

Fig. 3
Fig. 3

Geometric and Gaussian optics relevant for the use of the AOPDF. (a) Spatial chirp and parallel displacement of diffracted subpulses, e.g., for a double pulse. (b) Focusing of three transversally shifted Gaussian beams without proper positioning of the intermediate beam waist (IBW). (c) Measured beam profile of a triple pulse in the Gaussian focus with improper (top) and adjusted (bottom) collimation.

Fig. 2
Fig. 2

Spectra of shaped frequency-doubled NOPA pulses tunable between 250 and 390 nm and their Fourier limit. Top: unmodulated; bottom: modulated by the AOPDF.

Fig. 4
Fig. 4

(a) Cross correlation and spectrum of a pulse at 260 nm compressed to 19.5 fs FWHM. (b) ZAP-SPIDER measurement of a 16.8 fs pulse at 319 nm. (c) Cross correlations and spectra of double pulses at 260 nm with 100 fs (blue) and 150 fs (black) interpulse delay. The subpulses of the latter are in-phase (black spectrum), and opposite in phase (red spectrum).

Fig. 5
Fig. 5

Cross correlation of structured pulses at 319 nm (a) and 260 nm (b, c). (a) Pulse trains of 21 fs pulses subsequently manipulated. (b) 1 ps square pulse (violet), stairs with 300 fs broad equal amplitude steps (blue), 500 fs square pulse (black). (c) Value of the speed of light encoded on a pulse train via the subpulse intensity.

Fig. 6
Fig. 6

Cross correlation of double pulses with differing wavelength. (a) XFROG (left) of pulses with disjunct spectra (right) and input spectrum (black). (b) Corresponding cross correlation and pulse durations. (c) Cross correlation (bottom) and spectra (top) of subpulses with 12 nm bandwidth; colored: individual spectra; black: double-pulse spectrum.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d 1 = f + f 2 ( d 0 f ) ( d 0 f ) 2 + z 0 2 .

Metrics