Abstract

In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360° microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz) by slow light effects. The proposed device exploits the phenomenon of coherent population oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations of the suggested technique, dictated by the underlying physics, are also analyzed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  2. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
    [CrossRef] [PubMed]
  3. C. J. Chang-Hasnain and S. L. Chuang, “Slow and fast light in semiconductor quantum-well and quantum-dot devices,” J. Lightwave Technol. 24(12), 4642–4654 (2006).
    [CrossRef]
  4. J. Mørk, F. Öhman, M. van der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: controlling the speed of light using semiconductor waveguides,” Laser Photon Rev. 3(1-2), 30–44 (2009).
    [CrossRef]
  5. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  6. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  7. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [CrossRef] [PubMed]
  8. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
    [CrossRef] [PubMed]
  9. L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
    [CrossRef]
  10. J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature 433(7028), 811–812 (2005).
    [CrossRef] [PubMed]
  11. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
    [CrossRef]
  12. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
    [CrossRef] [PubMed]
  13. S. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on coherent population oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
    [CrossRef]
  14. A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, “Delay limit of slow light in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(6), 731–733 (2006).
    [CrossRef]
  15. W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008).
    [CrossRef] [PubMed]
  16. J. Capmany and D. Novak, “Microwave photonics combines two words,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  17. R. Jakoby, P. Scheele, S. Müller, and C. Weil, “Nonlinear dielectrics for tunable microwave components.” 15th International Conference on Microwaves, Radar and Wireless Communications, MIKON-2004, 2, 369–378 (2004).
  18. C. Weil, S. Müller, P. Scheele, Y. Kryvoshapka, G. Lüssem, P. Best, and R. Jakoby, “Ferroelectric- and liquid Crystal tunable microwave phase-shifters,” 33rd European Microwave Conference, Munich, Germany, 3, 1431–1434, (2003).
  19. P. Wang, C. Y. Tan, Y. G. Ma, W. N. Cheng, and C. K. Ong, “Planar tunable high-temperature superconductor microwave broadband phase shifter with patterned ferroelectric thin film,” Supercond. Sci. Technol. 20(1), 77–80 (2007).
    [CrossRef]
  20. N. S. Barker and G. M. Reveis, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. Microw. Theory Tech. 46(11), 1881–1890 (1998).
    [CrossRef]
  21. G. McFeetors and M. Okoniewski, “Distributed MEMS analog phase shifter with enhanced tuning,” IEEE Microw.Wirel. Comp. Lett. 16(1), 34–36 (2006).
    [CrossRef]
  22. T. Kim, D. Woo, C. Lee, and K. W. Kim, “A new 40 GHz analog phase shifter using phase-locked loops,” 35th European Microwave Conference, Paris, France, 2, (2005).
  23. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
    [CrossRef]
  24. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical Processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
    [CrossRef]
  25. K. Matsumoto, M. Izutsu, and T. Sueta, “Microwave phase shifter using optical waveguide structure,” J. Lightwave Technol. 9(11), 1523–1527 (1991).
    [CrossRef]
  26. Y. Yu and J. P. Yao, “A tunable microwave photonic filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 19, 1472–1474 (2007).
    [CrossRef]
  27. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
    [CrossRef] [PubMed]
  28. W. Xue, Y. Chen, F. Öhman, and J. Mørk, “The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers,” Opt. Express 17(3), 1404–1413 (2009).
    [CrossRef] [PubMed]
  29. M. Nielsen and J. Mørk, “Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering,” J. Opt. Soc. Am. B 21, 1606–1619 (2004).
    [CrossRef]
  30. B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
    [CrossRef]
  31. W. Xue, S. Sales, J. Capmany and J. Mørk, “Experimental Demonstration of 360° Tunable RF Phase Shift using Slow and Fast Light Effects,” in Slow and Fast Light, OSA Technical Digest (CD) (Optical Society of America, 2009), paper SMB6.

2009

2008

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008).
[CrossRef] [PubMed]

2007

J. Capmany and D. Novak, “Microwave photonics combines two words,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

P. Wang, C. Y. Tan, Y. G. Ma, W. N. Cheng, and C. K. Ong, “Planar tunable high-temperature superconductor microwave broadband phase shifter with patterned ferroelectric thin film,” Supercond. Sci. Technol. 20(1), 77–80 (2007).
[CrossRef]

S. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on coherent population oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
[CrossRef]

Y. Yu and J. P. Yao, “A tunable microwave photonic filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 19, 1472–1474 (2007).
[CrossRef]

2006

C. J. Chang-Hasnain and S. L. Chuang, “Slow and fast light in semiconductor quantum-well and quantum-dot devices,” J. Lightwave Technol. 24(12), 4642–4654 (2006).
[CrossRef]

G. McFeetors and M. Okoniewski, “Distributed MEMS analog phase shifter with enhanced tuning,” IEEE Microw.Wirel. Comp. Lett. 16(1), 34–36 (2006).
[CrossRef]

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, “Delay limit of slow light in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(6), 731–733 (2006).
[CrossRef]

2005

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
[CrossRef] [PubMed]

J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature 433(7028), 811–812 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical Processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
[CrossRef]

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

2004

2003

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

1998

N. S. Barker and G. M. Reveis, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. Microw. Theory Tech. 46(11), 1881–1890 (1998).
[CrossRef]

1996

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

1991

K. Matsumoto, M. Izutsu, and T. Sueta, “Microwave phase shifter using optical waveguide structure,” J. Lightwave Technol. 9(11), 1523–1527 (1991).
[CrossRef]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

Barker, N. S.

N. S. Barker and G. M. Reveis, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. Microw. Theory Tech. 46(11), 1881–1890 (1998).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Capmany, J.

Chang, S.

S. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on coherent population oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
[CrossRef]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain and S. L. Chuang, “Slow and fast light in semiconductor quantum-well and quantum-dot devices,” J. Lightwave Technol. 24(12), 4642–4654 (2006).
[CrossRef]

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, “Delay limit of slow light in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(6), 731–733 (2006).
[CrossRef]

Chen, J. X.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Chen, Y.

Cheng, W. N.

P. Wang, C. Y. Tan, Y. G. Ma, W. N. Cheng, and C. K. Ong, “Planar tunable high-temperature superconductor microwave broadband phase shifter with patterned ferroelectric thin film,” Supercond. Sci. Technol. 20(1), 77–80 (2007).
[CrossRef]

Chuang, S. L.

S. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on coherent population oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
[CrossRef]

C. J. Chang-Hasnain and S. L. Chuang, “Slow and fast light in semiconductor quantum-well and quantum-dot devices,” J. Lightwave Technol. 24(12), 4642–4654 (2006).
[CrossRef]

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Dagens, B.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Dahan, D.

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Eggleton, B. J.

J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature 433(7028), 811–812 (2005).
[CrossRef] [PubMed]

Eisenstein, G.

Fiore, A.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Izutsu, M.

K. Matsumoto, M. Izutsu, and T. Sueta, “Microwave phase shifter using optical waveguide structure,” J. Lightwave Technol. 9(11), 1523–1527 (1991).
[CrossRef]

Kjær, R.

Kondratko, P. K.

S. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on coherent population oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
[CrossRef]

Krauss, T. F.

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

Landreau, J.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Le Gouezigou, O.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Lunnemann, P.

J. Mørk, F. Öhman, M. van der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: controlling the speed of light using semiconductor waveguides,” Laser Photon Rev. 3(1-2), 30–44 (2009).
[CrossRef]

Ma, Y. G.

P. Wang, C. Y. Tan, Y. G. Ma, W. N. Cheng, and C. K. Ong, “Planar tunable high-temperature superconductor microwave broadband phase shifter with patterned ferroelectric thin film,” Supercond. Sci. Technol. 20(1), 77–80 (2007).
[CrossRef]

Make, D.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Markus, A.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Matsumoto, K.

K. Matsumoto, M. Izutsu, and T. Sueta, “Microwave phase shifter using optical waveguide structure,” J. Lightwave Technol. 9(11), 1523–1527 (1991).
[CrossRef]

McFeetors, G.

G. McFeetors and M. Okoniewski, “Distributed MEMS analog phase shifter with enhanced tuning,” IEEE Microw.Wirel. Comp. Lett. 16(1), 34–36 (2006).
[CrossRef]

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Mok, J. T.

J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature 433(7028), 811–812 (2005).
[CrossRef] [PubMed]

Mørk, J.

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Nielsen, M.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two words,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Öhman, F.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Okoniewski, M.

G. McFeetors and M. Okoniewski, “Distributed MEMS analog phase shifter with enhanced tuning,” IEEE Microw.Wirel. Comp. Lett. 16(1), 34–36 (2006).
[CrossRef]

Ong, C. K.

P. Wang, C. Y. Tan, Y. G. Ma, W. N. Cheng, and C. K. Ong, “Planar tunable high-temperature superconductor microwave broadband phase shifter with patterned ferroelectric thin film,” Supercond. Sci. Technol. 20(1), 77–80 (2007).
[CrossRef]

Ortega, B.

Pastor, D.

Provost, J.-G.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Reveis, G. M.

N. S. Barker and G. M. Reveis, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. Microw. Theory Tech. 46(11), 1881–1890 (1998).
[CrossRef]

Sales, S.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Sedgwick, F. G.

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, “Delay limit of slow light in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(6), 731–733 (2006).
[CrossRef]

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Su, H.

S. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on coherent population oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
[CrossRef]

Sueta, T.

K. Matsumoto, M. Izutsu, and T. Sueta, “Microwave phase shifter using optical waveguide structure,” J. Lightwave Technol. 9(11), 1523–1527 (1991).
[CrossRef]

Tan, C. Y.

P. Wang, C. Y. Tan, Y. G. Ma, W. N. Cheng, and C. K. Ong, “Planar tunable high-temperature superconductor microwave broadband phase shifter with patterned ferroelectric thin film,” Supercond. Sci. Technol. 20(1), 77–80 (2007).
[CrossRef]

Thedrez, B.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

Uskov, A. V.

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, “Delay limit of slow light in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(6), 731–733 (2006).
[CrossRef]

van der Poel, M.

J. Mørk, F. Öhman, M. van der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: controlling the speed of light using semiconductor waveguides,” Laser Photon Rev. 3(1-2), 30–44 (2009).
[CrossRef]

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
[CrossRef] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Wang, P.

P. Wang, C. Y. Tan, Y. G. Ma, W. N. Cheng, and C. K. Ong, “Planar tunable high-temperature superconductor microwave broadband phase shifter with patterned ferroelectric thin film,” Supercond. Sci. Technol. 20(1), 77–80 (2007).
[CrossRef]

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Xue, W.

Yao, J. P.

Y. Yu and J. P. Yao, “A tunable microwave photonic filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 19, 1472–1474 (2007).
[CrossRef]

Yu, Y.

Y. Yu and J. P. Yao, “A tunable microwave photonic filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 19, 1472–1474 (2007).
[CrossRef]

Yvind, K.

J. Mørk, F. Öhman, M. van der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: controlling the speed of light using semiconductor waveguides,” Laser Photon Rev. 3(1-2), 30–44 (2009).
[CrossRef]

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
[CrossRef] [PubMed]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Electron. Lett.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

IEEE J. Quantum Electron.

S. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on coherent population oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
[CrossRef]

IEEE Microw.Wirel. Comp. Lett.

G. McFeetors and M. Okoniewski, “Distributed MEMS analog phase shifter with enhanced tuning,” IEEE Microw.Wirel. Comp. Lett. 16(1), 34–36 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Yu and J. P. Yao, “A tunable microwave photonic filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 19, 1472–1474 (2007).
[CrossRef]

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, “Delay limit of slow light in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(6), 731–733 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

N. S. Barker and G. M. Reveis, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. Microw. Theory Tech. 46(11), 1881–1890 (1998).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Laser Photon Rev.

J. Mørk, F. Öhman, M. van der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: controlling the speed of light using semiconductor waveguides,” Laser Photon Rev. 3(1-2), 30–44 (2009).
[CrossRef]

Nat. Photonics

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two words,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Nature

J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature 433(7028), 811–812 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Proc. IEEE

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Supercond. Sci. Technol.

P. Wang, C. Y. Tan, Y. G. Ma, W. N. Cheng, and C. K. Ong, “Planar tunable high-temperature superconductor microwave broadband phase shifter with patterned ferroelectric thin film,” Supercond. Sci. Technol. 20(1), 77–80 (2007).
[CrossRef]

Other

R. Jakoby, P. Scheele, S. Müller, and C. Weil, “Nonlinear dielectrics for tunable microwave components.” 15th International Conference on Microwaves, Radar and Wireless Communications, MIKON-2004, 2, 369–378 (2004).

C. Weil, S. Müller, P. Scheele, Y. Kryvoshapka, G. Lüssem, P. Best, and R. Jakoby, “Ferroelectric- and liquid Crystal tunable microwave phase-shifters,” 33rd European Microwave Conference, Munich, Germany, 3, 1431–1434, (2003).

T. Kim, D. Woo, C. Lee, and K. W. Kim, “A new 40 GHz analog phase shifter using phase-locked loops,” 35th European Microwave Conference, Paris, France, 2, (2005).

W. Xue, S. Sales, J. Capmany and J. Mørk, “Experimental Demonstration of 360° Tunable RF Phase Shift using Slow and Fast Light Effects,” in Slow and Fast Light, OSA Technical Digest (CD) (Optical Society of America, 2009), paper SMB6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Configuration of a 360° microwave photonic phase shifter. (a) Simplified diagram showing the cascading of stages of phase shifters followed by regenerators. Both functionalities can be implemented in active waveguides by using the effects of population oscillations and wave mixing. (b) Illustrations of the evolution of the complex amplitudes of the sidebands in a polar representation.

Fig. 2
Fig. 2

Calculated microwave phase shift as a function of both microwave frequency and the injection currents of three SOAs. (a) Conventional case without optical filtering, which corresponds to simply cascading five SOAs. (b) Blocking the red-shifted sidebands.

Fig. 3
Fig. 3

Experimental set-up for measuring the microwave phase shift. (PC: polarization controller; MZM: Mach-Zehnder intensity modulator; EDFA: erbium doped fiber amplifier; ISO: fiber isolator; FBG: fiber Bragg grating). The laser at the wavelength of 1539nm is intensity modulated by the microwave electrical signal from the network analyzer, which is also used to measure the microwave phase shift induced by the SOAs.

Fig. 4
Fig. 4

Experimental demonstration of 360° microwave phase shift. (a) Microwave phase shift and (b) power changes at the microwave frequency of 40 GHz. The injection currents (I1, I2, I3) are increased from 80 mA to 400 mA consecutively. The markers are experimental data and the black solid lines are numerical simulations. The green dashed line shows a linear fit.

Fig. 5
Fig. 5

Experimental demonstration of microwave phase shift (colour contour) and relative power change (black solid lines). The measurements are shown as a function of the currents I1 and I2 with I3 being fixed at 80 mA, and performed at 40 GHz.

Fig. 6
Fig. 6

Measured microwave frequency dependence of phase shifter. (a) Microwave phase shifts (colour scale) for a single phase shift stage as a function of microwave frequency and input optical power when blocking the red-shifted sideband. The black dashed curve shows the analytical result, Eq. (2). (b) Microwave phase shift for three cascaded phase shifter stages as a function of the microwave modulation frequency. The injection currents (I1, I2, I3) are consecutively increased from 80 mA to 400 mA.

Fig. 7
Fig. 7

Sketch of a possible monolithic implementation of a microwave photonic phase shifter with micro-rings to realize optical filtering.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ω max ( S , τ s ) = ( 1 + S ) · 1 τ s
Ω max ( S , τ s , α ) = S + S 2 4 ( 1 + S ) 4 Φ 2 2 Φ ( 1 + S ) · 1 τ s

Metrics