Abstract

Single frequency operation of a diode-pumped tunable injection-seeded Nd:GSAG Q-switched laser around 942nm was demonstrated. With a three-mirror ring cavity, the single frequency laser pulse with output energy of 13.2mJ was obtained at a repetition rate of 10Hz. The linewidth of the single frequency laser was less than 100MHz. The wavelength of the single frequency Nd:GSAG laser can be tuned from 942.38nm to 943.10nm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37(18), 3825–3844 (1998), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-18-3825 .
    [CrossRef]
  2. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67(4), 399–410 (1998).
    [CrossRef]
  3. G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67(4), 427–431 (1998).
    [CrossRef]
  4. Z. Chu, T. D. Wilkerson, and U. N. Singh, “Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser,” Appl. Opt. 32(6), 992–998 (1993), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-6-992 .
    [CrossRef] [PubMed]
  5. F. Kallmeyer, A. Hermerschmidt, H. J. Eichler, and H. H. Klingenberg, “Injection Seeding of a High Energy Ti:Sapphire Laser for Water Vapor Detection around 935nm,” in Advanced Solid-State Photonics (ASSP) 2005.paper: WB20. http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2005-WB20
  6. J. Löhring, A. Meissner, V. Morasch, P. Bechker, W. Heddrich, and D. Hoffmann, “Single-frequency Nd:YGG laser at 935 nm for future water-vapor DIAL systems,” Proc. SPIE 7193, 1Y1–1Y7 (2009).
  7. K. He, Z. Wei, D. Li, Z. Zhang, H. Zhang, J. Wang, and C. Gao, “Diode-pumped quasi-three-level CW Nd:CLNGG and Nd:CNGG lasers,” Opt. Express 17(21), 19292 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-19292 .
    [CrossRef]
  8. S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 170, 275 (2007).
  9. F. Kallmeyer, X. Wang, and H. J. Eichler, “Tunable Nd:GSAG laser around 943nm for water vapor detection,” Proc. SPIE 7131, 713111 (2009).
  10. F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89(2-3), 305–310 (2007).
    [CrossRef]
  11. I. Freitag, R. Henking, A. Tünnermann, and H. Welling, “Quasi-three-level room-temperature Nd:YAG ring laser with high single-frequency output power at 946 nm,” Opt. Lett. 20(24), 2499–2501 (1995), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-20-24-2499 .
    [CrossRef] [PubMed]
  12. M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194(1-3), 207–211 (2001).
    [CrossRef]
  13. G. Hollemann, E. Peik, A. Rusch, and H. Walther, “Injection locking of a diode-pumped Nd:YAG laser at 946nm,” Opt. Lett. 20(18), 1871–1873 (1995), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-20-18-1871 .
    [CrossRef] [PubMed]
  14. C. Xu, Z. Wei, Y. Zhang, D. Li, Z. Zhang, X. Wang, S. Wang, H. J. Eichler, C. Zhang, and C. Gao, “Diode-pumped passively mode-locked Nd:GSAG laser at 942 nm,” Opt. Lett. 34(15), 2324–2326 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-15-2324 .
    [CrossRef] [PubMed]
  15. T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35-ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40(18), 3046 (2001), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-18-3046 .
    [CrossRef]
  16. H. I. T. R. A. N. Database, http://cfa-www.harvard.edu/HITRAN .

2009

2007

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89(2-3), 305–310 (2007).
[CrossRef]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 170, 275 (2007).

2001

1998

V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37(18), 3825–3844 (1998), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-18-3825 .
[CrossRef]

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67(4), 399–410 (1998).
[CrossRef]

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67(4), 427–431 (1998).
[CrossRef]

1995

1993

Bagayev, S. N.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194(1-3), 207–211 (2001).
[CrossRef]

Baumert, T.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67(4), 427–431 (1998).
[CrossRef]

Belkin, A. M.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194(1-3), 207–211 (2001).
[CrossRef]

Bösenberg, J.

Browell, E. V.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67(4), 399–410 (1998).
[CrossRef]

Chu, Z.

Czeranowsky, C.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 170, 275 (2007).

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89(2-3), 305–310 (2007).
[CrossRef]

Dziedzina, M.

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89(2-3), 305–310 (2007).
[CrossRef]

Ehret, G.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67(4), 427–431 (1998).
[CrossRef]

Eichler, H. J.

F. Kallmeyer, X. Wang, and H. J. Eichler, “Tunable Nd:GSAG laser around 943nm for water vapor detection,” Proc. SPIE 7131, 713111 (2009).

C. Xu, Z. Wei, Y. Zhang, D. Li, Z. Zhang, X. Wang, S. Wang, H. J. Eichler, C. Zhang, and C. Gao, “Diode-pumped passively mode-locked Nd:GSAG laser at 942 nm,” Opt. Lett. 34(15), 2324–2326 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-15-2324 .
[CrossRef] [PubMed]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 170, 275 (2007).

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89(2-3), 305–310 (2007).
[CrossRef]

Fix, A.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67(4), 427–431 (1998).
[CrossRef]

Freitag, I.

Fry, E. S.

Gao, C.

Grant, W. B.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67(4), 399–410 (1998).
[CrossRef]

He, K.

Henking, R.

Hollemann, G.

Huber, G.

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89(2-3), 305–310 (2007).
[CrossRef]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 170, 275 (2007).

Ileri, B.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 170, 275 (2007).

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89(2-3), 305–310 (2007).
[CrossRef]

Ismail, S.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67(4), 399–410 (1998).
[CrossRef]

Kallmeyer, F.

F. Kallmeyer, X. Wang, and H. J. Eichler, “Tunable Nd:GSAG laser around 943nm for water vapor detection,” Proc. SPIE 7131, 713111 (2009).

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89(2-3), 305–310 (2007).
[CrossRef]

Larsen, M. P.

Li, D.

Okhapkin, M. V.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194(1-3), 207–211 (2001).
[CrossRef]

Peik, E.

Petermann, K.

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89(2-3), 305–310 (2007).
[CrossRef]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 170, 275 (2007).

Poberaj, G.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67(4), 427–431 (1998).
[CrossRef]

Rusch, A.

Singh, U. N.

Skvortsov, M. N.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194(1-3), 207–211 (2001).
[CrossRef]

Strohmaier, S. G. P.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 170, 275 (2007).

Tünnermann, A.

Walther, H.

Walther, T.

Wang, J.

Wang, S.

Wang, X.

C. Xu, Z. Wei, Y. Zhang, D. Li, Z. Zhang, X. Wang, S. Wang, H. J. Eichler, C. Zhang, and C. Gao, “Diode-pumped passively mode-locked Nd:GSAG laser at 942 nm,” Opt. Lett. 34(15), 2324–2326 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-15-2324 .
[CrossRef] [PubMed]

F. Kallmeyer, X. Wang, and H. J. Eichler, “Tunable Nd:GSAG laser around 943nm for water vapor detection,” Proc. SPIE 7131, 713111 (2009).

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89(2-3), 305–310 (2007).
[CrossRef]

Wei, Z.

Weiss, V.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67(4), 427–431 (1998).
[CrossRef]

Welling, H.

Wilkerson, T. D.

Wulfmeyer, V.

Xu, C.

Zhang, C.

Zhang, H.

Zhang, Y.

Zhang, Z.

Appl. Opt.

Appl. Phys. B

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67(4), 399–410 (1998).
[CrossRef]

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67(4), 427–431 (1998).
[CrossRef]

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89(2-3), 305–310 (2007).
[CrossRef]

Opt. Commun.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 170, 275 (2007).

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194(1-3), 207–211 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

F. Kallmeyer, X. Wang, and H. J. Eichler, “Tunable Nd:GSAG laser around 943nm for water vapor detection,” Proc. SPIE 7131, 713111 (2009).

Other

F. Kallmeyer, A. Hermerschmidt, H. J. Eichler, and H. H. Klingenberg, “Injection Seeding of a High Energy Ti:Sapphire Laser for Water Vapor Detection around 935nm,” in Advanced Solid-State Photonics (ASSP) 2005.paper: WB20. http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2005-WB20

J. Löhring, A. Meissner, V. Morasch, P. Bechker, W. Heddrich, and D. Hoffmann, “Single-frequency Nd:YGG laser at 935 nm for future water-vapor DIAL systems,” Proc. SPIE 7193, 1Y1–1Y7 (2009).

H. I. T. R. A. N. Database, http://cfa-www.harvard.edu/HITRAN .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the injection-seeded Nd:GSAG laser.

Fig. 2
Fig. 2

The output energy versus pump energy when the Nd:GSAG laser with and without the injection-seeding (left) and the beam profile at the maximum output energy (right).

Fig. 3
Fig. 3

Build-up time of laser pulse when the laser was operated in the free running mode (black) and injection-seeding mode (red).

Fig. 4
Fig. 4

Spectra of the laser pulses s in free running mode (left) and injection-seeding mode (right)

Fig. 5
Fig. 5

CCD scan of FPI interference fringes of the injection-seeded laser. The ring width is determined by a Gaussian fit of the intensity distribution.

Fig. 6
Fig. 6

Typical examples of the spectra of the Q-switched laser in free running mode (black line) and in injection-seeding mode (red line).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ v v = 2 r · δ r δ r 2 2 2 f 2 r 2 r · δ r f 2

Metrics