Abstract

Temporal phase modulation of spread stealth signals is proposed and demonstrated to improve optical steganography transmission privacy. After phase modulation, the temporally spread stealth signal has a more complex spectral-phase-temporal relationship, such that the original temporal profile cannot be restored when only dispersion compensation is applied to the temporally spread stealth signals. Therefore, it increases the difficulty for the eavesdropper to detect and intercept the stealth channel that is hidden under a public transmission, even with a correct dispersion compensation device. The experimental results demonstrate the feasibility of this approach and display insignificant degradation in transmission performance, compared to the conventional stealth transmission without temporal phase modulation. The proposed system can also work without a clock transmission for signal synchronization. Our analysis and simulation results show that it is difficult for the adversary to detect the existence of the stealth transmission, or find the correct phase mask to recover the stealth signals.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Wu and E. E. Narimanov, “A method for secure communications over a public fiber-optical network,” Opt. Express 14(9), 3738–3751 (2006).
    [CrossRef] [PubMed]
  2. Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
    [CrossRef]
  3. K. Kravtsov, B. Wu, I. Glesk, P. R. Prucnal, and E. Narimanov, “Stealth transmission over a WDM network with detection based on an all-optical thresholder,” IEEE/LEOS Annual Meet., 480–481 (2007).
  4. B. Wu, P. R. Prucnal, and E. E. Narimanov, “Secure Transmission Over an Existing Public WDM Lightwave Network,” IEEE Photon. Technol. Lett. 18(17), 1870–1872 (2006).
    [CrossRef]
  5. X. Wang and N. Wada, “Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application,” Opt. Express 15(12), 7319–7326 (2007).
    [CrossRef] [PubMed]
  6. R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Ben Yoo, “Demonstration of an error-free 4×10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
    [CrossRef]
  7. M. P. Fok and P. R. Prucnal, “A Compact and Low-Latency Scheme for Optical Steganography Using Chirped Fiber Bragg Gratings,” Electron. Lett. 45(3), 179–180 (2009).
    [CrossRef]
  8. K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15(20), 13114–13122 (2007).
    [CrossRef] [PubMed]

2009

M. P. Fok and P. R. Prucnal, “A Compact and Low-Latency Scheme for Optical Steganography Using Chirped Fiber Bragg Gratings,” Electron. Lett. 45(3), 179–180 (2009).
[CrossRef]

2007

2006

B. Wu, P. R. Prucnal, and E. E. Narimanov, “Secure Transmission Over an Existing Public WDM Lightwave Network,” IEEE Photon. Technol. Lett. 18(17), 1870–1872 (2006).
[CrossRef]

B. B. Wu and E. E. Narimanov, “A method for secure communications over a public fiber-optical network,” Opt. Express 14(9), 3738–3751 (2006).
[CrossRef] [PubMed]

2004

R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Ben Yoo, “Demonstration of an error-free 4×10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[CrossRef]

Ben Yoo, S. J.

R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Ben Yoo, “Demonstration of an error-free 4×10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[CrossRef]

Bubnov, M. M.

Cong, W.

R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Ben Yoo, “Demonstration of an error-free 4×10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[CrossRef]

Fok, M. P.

M. P. Fok and P. R. Prucnal, “A Compact and Low-Latency Scheme for Optical Steganography Using Chirped Fiber Bragg Gratings,” Electron. Lett. 45(3), 179–180 (2009).
[CrossRef]

Glesk, I.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

Heritage, J. P.

R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Ben Yoo, “Demonstration of an error-free 4×10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[CrossRef]

Hernandez, V. J.

R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Ben Yoo, “Demonstration of an error-free 4×10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[CrossRef]

Huang, Y.-K.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

Kolner, B. H.

R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Ben Yoo, “Demonstration of an error-free 4×10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[CrossRef]

Kravtsov, K.

Li, K.

R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Ben Yoo, “Demonstration of an error-free 4×10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[CrossRef]

Narimanov, E. E.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

B. Wu, P. R. Prucnal, and E. E. Narimanov, “Secure Transmission Over an Existing Public WDM Lightwave Network,” IEEE Photon. Technol. Lett. 18(17), 1870–1872 (2006).
[CrossRef]

B. B. Wu and E. E. Narimanov, “A method for secure communications over a public fiber-optical network,” Opt. Express 14(9), 3738–3751 (2006).
[CrossRef] [PubMed]

Prucnal, P. R.

M. P. Fok and P. R. Prucnal, “A Compact and Low-Latency Scheme for Optical Steganography Using Chirped Fiber Bragg Gratings,” Electron. Lett. 45(3), 179–180 (2009).
[CrossRef]

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15(20), 13114–13122 (2007).
[CrossRef] [PubMed]

B. Wu, P. R. Prucnal, and E. E. Narimanov, “Secure Transmission Over an Existing Public WDM Lightwave Network,” IEEE Photon. Technol. Lett. 18(17), 1870–1872 (2006).
[CrossRef]

Scott, R. P.

R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Ben Yoo, “Demonstration of an error-free 4×10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[CrossRef]

Wada, N.

Wang, T.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

Wang, X.

Wu, B.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

B. Wu, P. R. Prucnal, and E. E. Narimanov, “Secure Transmission Over an Existing Public WDM Lightwave Network,” IEEE Photon. Technol. Lett. 18(17), 1870–1872 (2006).
[CrossRef]

Wu, B. B.

Electron. Lett.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett. 43(25), 1449–1451 (2007).
[CrossRef]

M. P. Fok and P. R. Prucnal, “A Compact and Low-Latency Scheme for Optical Steganography Using Chirped Fiber Bragg Gratings,” Electron. Lett. 45(3), 179–180 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

B. Wu, P. R. Prucnal, and E. E. Narimanov, “Secure Transmission Over an Existing Public WDM Lightwave Network,” IEEE Photon. Technol. Lett. 18(17), 1870–1872 (2006).
[CrossRef]

R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. Ben Yoo, “Demonstration of an error-free 4×10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16(9), 2186–2188 (2004).
[CrossRef]

Opt. Express

Other

K. Kravtsov, B. Wu, I. Glesk, P. R. Prucnal, and E. Narimanov, “Stealth transmission over a WDM network with detection based on an all-optical thresholder,” IEEE/LEOS Annual Meet., 480–481 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of temporal phase modulation on spread stealth pulses

Fig. 2
Fig. 2

SPE code generation process

Fig. 3
Fig. 3

Temporal profiles of various SPE codes generated using different phase masks (16 chips in each bit). 0 means 0 phase shift, and 1 means a π phase shift. (a) no phase mask; (b) phase mask = 1010101010101010; (c) phase mask = 0100101101010111; (d) phase mask = 1110100101000110; (e) phase mask = 1001101001011010.

Fig. 4
Fig. 4

The dispersion profiles of a chirped FBG at transmission and reflection ports

Fig. 5
Fig. 5

Schematic diagram of the stealth transmission experiment setup. MLL: mode-locked laser; DDF: dispersion decreasing fiber; IM: intensity modulator; PM: phase modulator; PC: polarization controller; D: tunable delay line; EDFA: erbium-doped fiber amplifier.

Fig. 6
Fig. 6

Temporal profiles of the original stealth pulses (a), and spread pulses after stretching and amplification (b)

Fig. 7
Fig. 7

Temporal profiles (a) original stealth pulses; (b) spread stealth signal after phase modulation; (c) recovered stealth signal; (d) eye diagram of modulated public data (e) eye diagram of public data and stealth data. (f) recovered stealth signals with only dispersion compensation.

Fig. 8
Fig. 8

Spectra of public signal, stealth signal and combined signal.

Fig. 9
Fig. 9

BER measurements of (a) public channel, and (b) stealth channel

Fig. 10
Fig. 10

Function demonstration of an all-optical thresholder: (a) thresholder inputs; (b) thresholder outputs

Fig. 11
Fig. 11

Schematic diagram of the stealth receiver module without a synchronous clock. PM: phase modulator; PC: polarization controller; D: tunable delay line

Fig. 12
Fig. 12

The recovered stealth signal waveforms (a) perfectly aligned phase mask (b) misaligned phase mask

Fig. 13
Fig. 13

Simulation results of the stealth signals’ waveforms with different chip numbers and arbitrary phase shifts. The simulation is based on a 1.3nm-bandwidth MLL at a rate of 2.5Gs/s. The 16-chip phase mask uses pattern (π/8)* [1,-2,6, −8, 1,-3,1,0, 1,-2,5,-4, 3,-4,1,-7]. The 32-chip phase mask uses pattern (π/8)*[5,-6,-3,0,7,-4,4,-2,1,5,-2,6,-3,1,-3,1,6, 1,-2,5, −4, 3,-4,1,-7,-5,2,-2,1,-2,6,-6]. Figure (b) is the enlarged version of the rectangular part in Figure (a).

Fig. 14
Fig. 14

Simulation results of the stealth signals’ waveforms when different conjugate phase masks are applied The original 32-chip phase mask uses pattern (π/8)* [-5,0,-2,1, 5,-6,4,-2, 7,-6,3,-2, 1,5,-2,-6,3,-2,6,-8, 1,-8,1,0, 5,-2,5,-4, 3,-4,5,-2]; Figure (b) is the enlarged version of the rectangular part in Figure (a).

Metrics