Abstract

Light-matter interaction can be greatly enhanced in nano-scale plasmonic cavities with tightly confined optical mode, where the mode volume determines the interaction strength. The experimental determination of the mode volume of plasmonic elements is therefore of fundamental importance. Mapping the electric field distribution using near-field scanning optical microscopy (NSOM) may disturb the field distribution hence prevent a reliable measurement of the mode volume. Here, we develop a non-pertubative technique to experimentally determine the mode volume of plasmonic resonators in the far field through a unique optical force method.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  2. K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
    [CrossRef] [PubMed]
  3. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
    [CrossRef]
  4. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [CrossRef] [PubMed]
  5. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  6. A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307 (2008).
    [CrossRef]
  7. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
    [CrossRef] [PubMed]
  8. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
    [CrossRef] [PubMed]
  9. R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
    [CrossRef]
  10. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [CrossRef] [PubMed]
  11. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
    [CrossRef]
  12. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  13. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  14. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  15. S. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron. 38(1-3), 257–267 (2006).
    [CrossRef]
  16. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
    [CrossRef]
  17. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
    [CrossRef] [PubMed]
  18. M. L. Povinelli, S. G. Johnson, M. Lonèar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,” Opt. Express 13(20), 8286–8295 (2005).
    [CrossRef] [PubMed]
  19. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
    [CrossRef] [PubMed]
  20. S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16(14), 10580–10595 (2008).
    [CrossRef] [PubMed]
  21. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [CrossRef] [PubMed]
  22. H. E. Kamchouchi and A. A. Zaky, “A direct method for calculation of the edge capacitance of thick electrodes,” J. Phys. D Appl. Phys. 8(12), 1365–1371 (1975).
    [CrossRef]
  23. E. W. Greeneich, “An analytical model for the gate capacitance of small-geometry MOS structures,” IEEE Trans. Electron. Dev. 30(12), 1838–1839 (1983).
    [CrossRef]

2008 (6)

A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307 (2008).
[CrossRef]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[CrossRef] [PubMed]

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[CrossRef] [PubMed]

S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16(14), 10580–10595 (2008).
[CrossRef] [PubMed]

2006 (1)

S. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron. 38(1-3), 257–267 (2006).
[CrossRef]

2005 (5)

M. L. Povinelli, S. G. Johnson, M. Lonèar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,” Opt. Express 13(20), 8286–8295 (2005).
[CrossRef] [PubMed]

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

2003 (5)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

1998 (1)

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

1983 (1)

E. W. Greeneich, “An analytical model for the gate capacitance of small-geometry MOS structures,” IEEE Trans. Electron. Dev. 30(12), 1838–1839 (1983).
[CrossRef]

1975 (1)

H. E. Kamchouchi and A. A. Zaky, “A direct method for calculation of the edge capacitance of thick electrodes,” J. Phys. D Appl. Phys. 8(12), 1365–1371 (1975).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Alexander, V.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Alú, A.

A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307 (2008).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[CrossRef] [PubMed]

Bakker, R. M.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Bergman, D. J.

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

Boltasseva, A.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Capasso, F.

Chang, S. W.

Chen, J. J.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Chuang, S. L.

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Dorfmüller, J.

Drachev, V. P.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[CrossRef] [PubMed]

A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307 (2008).
[CrossRef]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Etrich, C.

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

Feldmann, J.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Giessen, H.

Greeneich, E. W.

E. W. Greeneich, “An analytical model for the gate capacitance of small-geometry MOS structures,” IEEE Trans. Electron. Dev. 30(12), 1838–1839 (1983).
[CrossRef]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

Ibanescu, M.

Irudayaraj, J

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Irudayaraj, J.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kamchouchi, H. E.

H. E. Kamchouchi and A. A. Zaky, “A direct method for calculation of the edge capacitance of thick electrodes,” J. Phys. D Appl. Phys. 8(12), 1365–1371 (1975).
[CrossRef]

Kern, K.

Kildishev, A. V

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Kildishev, A. V.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
[CrossRef]

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Lederer, F.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Li, K. R.

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Liu, Z. T.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Loncar, M.

Lonèar, M.

Maier, S.

S. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron. 38(1-3), 257–267 (2006).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Ni, C. Y. A.

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

Pedersen, R. H.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

Pertsch, T.

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

Povinelli, M. L.

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Rockstuhl, C.

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Shalaev, V. M

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Shalaev, V. M.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Smythe, E. J.

Soukoulis, C. M.

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

Stockman, M. I.

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Vogelgesang, R.

von Plessen, G.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Yuan, H. K.

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Zaky, A. A.

H. E. Kamchouchi and A. A. Zaky, “A direct method for calculation of the edge capacitance of thick electrodes,” J. Phys. D Appl. Phys. 8(12), 1365–1371 (1975).
[CrossRef]

Zentgraf, T.

Zheludev, N. I.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

Zhou, J. F.

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

IEEE Trans. Electron. Dev. (1)

E. W. Greeneich, “An analytical model for the gate capacitance of small-geometry MOS structures,” IEEE Trans. Electron. Dev. 30(12), 1838–1839 (1983).
[CrossRef]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
[CrossRef]

J. Phys. D Appl. Phys. (1)

H. E. Kamchouchi and A. A. Zaky, “A direct method for calculation of the edge capacitance of thick electrodes,” J. Phys. D Appl. Phys. 8(12), 1365–1371 (1975).
[CrossRef]

N. J. Phys. (1)

R. M. Bakker, V. P. Drachev, Z. T. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev, J. Irudayaraj, A. V Kildishev, V. Alexander, and V. M Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008).
[CrossRef]

Nat. Photonics (2)

A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307 (2008).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

S. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron. 38(1-3), 257–267 (2006).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. Lett. (6)

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Science (4)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of an optical dipole antenna, whose resonance frequency depends on the gap width. The optical force is given as a differentiation of the energy (resonance frequency) with respect to the gap width. (b) In the electro-static picture, the force is a Coulomb force resulting from the opposite charge accumulation on the two electrodes

Fig. 2
Fig. 2

(a) The schematic of a loop optical antenna. The dimensions are indicated in the figure: The width of the ring W = 68 nm, height of ring h = 40 nm, outer radius r = 155 nm, and the average gap g ranges from 24.1 nm to 54.8 nm for different samples. (b) SEM image of a loop antenna array with a period of 600 nm. (c) SEM images of four different samples with average gap widths of 24.1 nm, 32.1 nm, 45 nm and 54.8 nm, respectively.

Fig. 3
Fig. 3

(a, b) The measured and numerically calculated transmission spectra of samples with average gap width ranging from 24.1 nm to 54.8 nm. In both figures, black, red, cyan and blue curves correspond to samples with increasing gap sizes. The inset in (b) shows the electric field distribution at the resonance frequency (f = 120 THz or λ = 1500 nm) for the loop antenna with gap width of 24.1 nm.

Fig. 4
Fig. 4

Measured and simulated mode volumes of loop antennas. The black square and blue solid line represent the mode volume extracted using the optical force method from the resonance frequencies obtained from measurement and Microwave Studio simulation, respectively. The red solid line corresponds to the mode volume calculated rigorously from the near field electric and magnetic field distribution of the eigen-mode. For comparison, the geometrical gap volume, calculated as Vgap = gwh, is shown as the gray dashed line.

Fig. 5
Fig. 5

(a) the schematic of an electrode above a ground plane. (b) the capacitor formed between two identical electrode with twice the gap size as in (a). (c) The capacitor is in touch with a dielectric waveguide (substrate).

Tables (1)

Tables Icon

Table 1 Measured gap widths and resonance frequencies

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

F = Δ U Δ g = Δ ω Δ g
F = 1 2 V g 2 C g
E g 2 = V g 2 g 2 = 1 g 2 2 Δ ω / Δ g C / g
V eff = ω ε 0 E g 2 = g 2 2 ε 0 C g ω Δ ω / Δ g
C g ε 0 h w g 2 ε 0 π g [ 2 h + ( n s 2 + 1 ) w ]
C 1 ( g ' ) ε 0 A g ' + ε 0 π ( ln a + 0.613 ) S
a = 1 + 2 k 2 + 2 k k 2 1 4 k 2
k = ( p + g ' ) / g ' p / g '
C 2 ( g ) = C 1 ( g ' ) / 2 ε 0 A g + ε 0 2 π ( ln a + 0.613 ) ( 2 h + 2 w )
C ( g ) ε 0 A g + ε 0 2 π ( ln a + 0.613 ) [ 2 h + ( 1 + n s 2 ) w ]

Metrics