Abstract

The purpose of this paper is to use thermal energy and electrostatic force as an alternative to high-cost precision cutting or traditional injection molding in the fabrication of COC (cyclo-olefin copolymer) plastic aspheric bi-convex lenses with high Blu-Ray transmittance (92% at 405 nm). A glass substrate was used, and ultrasonic drilling defined the clear aperture of the aspheric bi-convex lens. The copolymer lens material was measured, filled and melted into the hole. A gradient electrical potential was applied between the top and bottom electrodes of the COC liquid droplet to control the profile of the lens. The thermal energy melted the COC into a dynamic fluid, and the electrostatic force controlled the aspheric morphology of the designed profile. The resulting lenses have a clear aperture of approximately 1.14 mm and a front focal length of 4.97 mm, and the spot size of the fabricated aspheric bi-convex lenses can be controlled to approximately 0.588 µm. This technology is capable of fabricating lenses for application in micro-optical systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
    [CrossRef] [PubMed]
  2. W. H. Hsieh and J. H. Chen, “Lens-Profile Control by Electrowetting Fabrication Technique,” IEEE Photon. Technol. Lett. 17(3), 606–608 (2005).
    [CrossRef]
  3. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [CrossRef] [PubMed]
  4. B. K. Nguyen, E. Iwase, K. Matsumoto, and I. Shimoyama, “Electrically Driven Varifocal Micro Lens Fabricated by Depositing Parylene Directly on Liquid,” Proc. IEEE MEMS 2007, Kobe, 305–308 (2007).
  5. M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of Water and Aqueous Solutions on Poly (ethylene terephthalate) Insulating Films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
    [CrossRef]
  6. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [CrossRef] [PubMed]
  7. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
    [CrossRef] [PubMed]
  8. S. M. Kuo, and C. H. Lin, “Non-Spherical SU-8 Microlens Array Fabricated Utilizing a Novel Stamping Process and an Electro-Static Pulling Method,” Proc. IEEE MEMS 2009, Sorrento, 987–990 (2009).
  9. K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable Microfluidic Optical Devices with an Integrated Microlens Array,” J. Micromech. Microeng. 16(8), 1660–1666 (2006).
    [CrossRef]
  10. C. C. Lee, S. Y. Hsiao, and W. Fang, “Formation and Integration of a Ball Lens Utilizing Two Phases Liquid Technology,” Proc. IEEE MEMS 2009, Sorrento, 172–175 (2009).
  11. Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for nanomechanical systems based on dielectric forces,” Nature 458(7241), 1001–1004 (2009).
    [CrossRef] [PubMed]
  12. K. Y. Hung, F. G. Tseng, and T. H. Liao, “Electrostatic force Modulated Micro-Aspherical Lens for Optical Pickup Head,” J. Microelectromech. Syst. 17(2), 370–380 (2008).
    [CrossRef]

2009 (2)

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for nanomechanical systems based on dielectric forces,” Nature 458(7241), 1001–1004 (2009).
[CrossRef] [PubMed]

2008 (2)

K. Y. Hung, F. G. Tseng, and T. H. Liao, “Electrostatic force Modulated Micro-Aspherical Lens for Optical Pickup Head,” J. Microelectromech. Syst. 17(2), 370–380 (2008).
[CrossRef]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable Microfluidic Optical Devices with an Integrated Microlens Array,” J. Micromech. Microeng. 16(8), 1660–1666 (2006).
[CrossRef]

2005 (1)

W. H. Hsieh and J. H. Chen, “Lens-Profile Control by Electrowetting Fabrication Technique,” IEEE Photon. Technol. Lett. 17(3), 606–608 (2005).
[CrossRef]

2003 (1)

1996 (1)

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of Water and Aqueous Solutions on Poly (ethylene terephthalate) Insulating Films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

Aizenberg, J.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable Microfluidic Optical Devices with an Integrated Microlens Array,” J. Micromech. Microeng. 16(8), 1660–1666 (2006).
[CrossRef]

Berge, B.

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of Water and Aqueous Solutions on Poly (ethylene terephthalate) Insulating Films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

Chandra, D.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable Microfluidic Optical Devices with an Integrated Microlens Array,” J. Micromech. Microeng. 16(8), 1660–1666 (2006).
[CrossRef]

Chen, J. H.

W. H. Hsieh and J. H. Chen, “Lens-Profile Control by Electrowetting Fabrication Technique,” IEEE Photon. Technol. Lett. 17(3), 606–608 (2005).
[CrossRef]

Cheng, C. C.

Chronis, N.

Hong, K. S.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable Microfluidic Optical Devices with an Integrated Microlens Array,” J. Micromech. Microeng. 16(8), 1660–1666 (2006).
[CrossRef]

Hsieh, W. H.

W. H. Hsieh and J. H. Chen, “Lens-Profile Control by Electrowetting Fabrication Technique,” IEEE Photon. Technol. Lett. 17(3), 606–608 (2005).
[CrossRef]

Hung, K. Y.

K. Y. Hung, F. G. Tseng, and T. H. Liao, “Electrostatic force Modulated Micro-Aspherical Lens for Optical Pickup Head,” J. Microelectromech. Syst. 17(2), 370–380 (2008).
[CrossRef]

Jeong, K. H.

Kotthaus, J. P.

Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for nanomechanical systems based on dielectric forces,” Nature 458(7241), 1001–1004 (2009).
[CrossRef] [PubMed]

Lee, L. P.

Liao, T. H.

K. Y. Hung, F. G. Tseng, and T. H. Liao, “Electrostatic force Modulated Micro-Aspherical Lens for Optical Pickup Head,” J. Microelectromech. Syst. 17(2), 370–380 (2008).
[CrossRef]

Lin, Y. J.

Liu, G. L.

Ren, H.

Sharonov, A.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable Microfluidic Optical Devices with an Integrated Microlens Array,” J. Micromech. Microeng. 16(8), 1660–1666 (2006).
[CrossRef]

Tseng, F. G.

K. Y. Hung, F. G. Tseng, and T. H. Liao, “Electrostatic force Modulated Micro-Aspherical Lens for Optical Pickup Head,” J. Microelectromech. Syst. 17(2), 370–380 (2008).
[CrossRef]

Unterreithmeier, Q. P.

Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for nanomechanical systems based on dielectric forces,” Nature 458(7241), 1001–1004 (2009).
[CrossRef] [PubMed]

Vallet, M.

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of Water and Aqueous Solutions on Poly (ethylene terephthalate) Insulating Films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

Volvelle, L.

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of Water and Aqueous Solutions on Poly (ethylene terephthalate) Insulating Films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

Wang, J.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable Microfluidic Optical Devices with an Integrated Microlens Array,” J. Micromech. Microeng. 16(8), 1660–1666 (2006).
[CrossRef]

Weig, E. M.

Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for nanomechanical systems based on dielectric forces,” Nature 458(7241), 1001–1004 (2009).
[CrossRef] [PubMed]

Wu, S. T.

Xianyu, H.

Xu, S.

Yang, S.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable Microfluidic Optical Devices with an Integrated Microlens Array,” J. Micromech. Microeng. 16(8), 1660–1666 (2006).
[CrossRef]

Yeh, J. A.

IEEE Photon. Technol. Lett. (1)

W. H. Hsieh and J. H. Chen, “Lens-Profile Control by Electrowetting Fabrication Technique,” IEEE Photon. Technol. Lett. 17(3), 606–608 (2005).
[CrossRef]

J. Microelectromech. Syst. (1)

K. Y. Hung, F. G. Tseng, and T. H. Liao, “Electrostatic force Modulated Micro-Aspherical Lens for Optical Pickup Head,” J. Microelectromech. Syst. 17(2), 370–380 (2008).
[CrossRef]

J. Micromech. Microeng. (1)

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable Microfluidic Optical Devices with an Integrated Microlens Array,” J. Micromech. Microeng. 16(8), 1660–1666 (2006).
[CrossRef]

Nature (1)

Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for nanomechanical systems based on dielectric forces,” Nature 458(7241), 1001–1004 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Polymer (Guildf.) (1)

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of Water and Aqueous Solutions on Poly (ethylene terephthalate) Insulating Films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

Other (3)

B. K. Nguyen, E. Iwase, K. Matsumoto, and I. Shimoyama, “Electrically Driven Varifocal Micro Lens Fabricated by Depositing Parylene Directly on Liquid,” Proc. IEEE MEMS 2007, Kobe, 305–308 (2007).

S. M. Kuo, and C. H. Lin, “Non-Spherical SU-8 Microlens Array Fabricated Utilizing a Novel Stamping Process and an Electro-Static Pulling Method,” Proc. IEEE MEMS 2009, Sorrento, 987–990 (2009).

C. C. Lee, S. Y. Hsiao, and W. Fang, “Formation and Integration of a Ball Lens Utilizing Two Phases Liquid Technology,” Proc. IEEE MEMS 2009, Sorrento, 172–175 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The concept of a bi-aspheric lens.

Fig. 2
Fig. 2

(a) The CFDRC theory model for a bi-aspheric lens. (b) Simulation results of the electrostatic-force distribution with different voltages.

Fig. 3
Fig. 3

Optical specifications of the bi-aspheric lens in this paper.

Fig. 4
Fig. 4

(a) The Process flows of the bi-aspheric lens. (b) Optimum curves for the relationship among time, temperature and applied voltage.

Fig. 5
Fig. 5

System setup used to measure the spot size of the aspheric lens.

Fig. 6
Fig. 6

(a-d) Four COC bi-aspheric lenses with different apply voltage (0V, 2500V, 2600V, 2700V). (e) The curve fitting profile of the COC lenses shown in Fig. 6(a)6(d)and the designed profile.

Fig. 7
Fig. 7

(a) A comparison of the S1 shape error of the lenses shown in Fig. 6(b)6(d) (compared to the design specifications). (b) A comparison of the S2 shape error of the lenses shown in Fig. 6(b)6(d)(compared to the design specifications). (c) The intensity distribution of the lens spot in Fig. 6(c). (d) The spot size of the lenses in Fig. 6(c) (e) The image of a commercial lens. (f) The intensity distribution of the lens spot in Fig. 7(e). (g) The spot size of the lenses in Fig. 7(e).

Tables (1)

Tables Icon

Table 1 Table of the lens parameters and optical performance by OSLO.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E = V ε 2 t ε 2 + d t ε 1
F = ε 0 2 ( ε 1 ε 2 ) ( E E ) F C O C
Z = ( c = 2.04081 ) r 2 1 + 1 ( c = 2.04081 ) 2 ( ( k = 1 ) + 1 ) r 2 + ( c 1 = 0 .27601) r 4 + ( c 2 = -0 .74213) r 6 + ( c 3 = 3.35597 ) r 8 + ( c 4 = -12 .16199) r 10

Metrics