Abstract

We report a study of the capabilities of an optical tweezer based on polarization gradient. We use a light polarization pattern that is able to simultaneously exert forces and torques in opposite directions depending on the particle’s position. It allows to perform oscillatory displacements and control the sense of rotation of several particles inside a uniformly illuminated region. Unconventional trapping of spinning particles in circularly polarized fringes has been observed, which suggests the involvement of hydrodynamic forces.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  3. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
    [CrossRef] [PubMed]
  4. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
    [CrossRef]
  5. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [CrossRef] [PubMed]
  6. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [CrossRef] [PubMed]
  7. R. L. Eriksen, P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Spatial light modulator-controlled alignment and spinning of birefringent particles optically trapped in an array,” Appl. Opt. 42(25), 5107–5111 (2003).
    [CrossRef] [PubMed]
  8. S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80(6), 631–634 (2005).
    [CrossRef]
  9. D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express 16(20), 15897–15902 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15897 .
    [CrossRef] [PubMed]
  10. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003).
  11. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
    [CrossRef] [PubMed]
  12. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31, 579–588 (1984).
    [CrossRef]
  13. S. G. Cloutier, “Polarization holography: orthogonal plane-polarized beam configuration with circular vectorial photoinduced anisotropy,” J. Phys. D Appl. Phys. 38(18), 3371–3375 (2005).
    [CrossRef]
  14. S. M. Barnett, “Optical angular momentum flux,” J. Opt. B Quantum Semiclassical Opt. 4(2), 361 (2002).
    [CrossRef]
  15. R. Zambrini and S. M. Barnett, “Angular momentum of multimode and polarization patterns,” Opt. Express 15(23), 15214–15227 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15214 .
    [CrossRef] [PubMed]
  16. S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High–efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
    [CrossRef]
  17. N. Murazawa, S. Juodkazis, and H. Misawa, “Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers,” J. Phys. D Appl. Phys. 38(16), 2923–2927 (2005).
    [CrossRef]
  18. C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 051707 (2006).
    [CrossRef] [PubMed]
  19. S. I. Rubinow and J. B. Keller, “The transverse force on a spinning sphere moving in a viscous fluid,” J. Fluid Mech. 11(03), 447–459 (1961).
    [CrossRef]
  20. G. K. Batchelor, An Introduction to Fluid Mechanics (Cambridge University Press, Cambridge, 1967)

2008 (3)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[CrossRef] [PubMed]

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express 16(20), 15897–15902 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15897 .
[CrossRef] [PubMed]

2007 (1)

2006 (1)

C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 051707 (2006).
[CrossRef] [PubMed]

2005 (3)

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80(6), 631–634 (2005).
[CrossRef]

S. G. Cloutier, “Polarization holography: orthogonal plane-polarized beam configuration with circular vectorial photoinduced anisotropy,” J. Phys. D Appl. Phys. 38(18), 3371–3375 (2005).
[CrossRef]

N. Murazawa, S. Juodkazis, and H. Misawa, “Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers,” J. Phys. D Appl. Phys. 38(16), 2923–2927 (2005).
[CrossRef]

2003 (3)

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High–efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

R. L. Eriksen, P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Spatial light modulator-controlled alignment and spinning of birefringent particles optically trapped in an array,” Appl. Opt. 42(25), 5107–5111 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2002 (3)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

S. M. Barnett, “Optical angular momentum flux,” J. Opt. B Quantum Semiclassical Opt. 4(2), 361 (2002).
[CrossRef]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

1984 (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31, 579–588 (1984).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

1961 (1)

S. I. Rubinow and J. B. Keller, “The transverse force on a spinning sphere moving in a viscous fluid,” J. Fluid Mech. 11(03), 447–459 (1961).
[CrossRef]

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Amato-Grill, J.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Barnett, S. M.

Botvinick, E.

Bowman, R.

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Cloutier, S. G.

S. G. Cloutier, “Polarization holography: orthogonal plane-polarized beam configuration with circular vectorial photoinduced anisotropy,” J. Phys. D Appl. Phys. 38(18), 3371–3375 (2005).
[CrossRef]

Daria, V. R.

Dholakia, K.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Eriksen, R. L.

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Glückstad, J.

Grier, D. G.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Gupta, P. K.

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80(6), 631–634 (2005).
[CrossRef]

Hasegawa, I.

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High–efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Jánossy, I.

C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 051707 (2006).
[CrossRef] [PubMed]

Juodkazis, S.

N. Murazawa, S. Juodkazis, and H. Misawa, “Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers,” J. Phys. D Appl. Phys. 38(16), 2923–2927 (2005).
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High–efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

Keen, S.

Keller, J. B.

S. I. Rubinow and J. B. Keller, “The transverse force on a spinning sphere moving in a viscous fluid,” J. Fluid Mech. 11(03), 447–459 (1961).
[CrossRef]

Leach, J.

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Manzo, C.

C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 051707 (2006).
[CrossRef] [PubMed]

Marrucci, L.

C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 051707 (2006).
[CrossRef] [PubMed]

Matsuo, S.

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High–efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Misawa, H.

N. Murazawa, S. Juodkazis, and H. Misawa, “Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers,” J. Phys. D Appl. Phys. 38(16), 2923–2927 (2005).
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High–efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Mohanty, S. K.

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80(6), 631–634 (2005).
[CrossRef]

Murazawa, N.

N. Murazawa, S. Juodkazis, and H. Misawa, “Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers,” J. Phys. D Appl. Phys. 38(16), 2923–2927 (2005).
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High–efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Nikolova, L.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31, 579–588 (1984).
[CrossRef]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Padgett, M.

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Paparo, D.

C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 051707 (2006).
[CrossRef] [PubMed]

Preece, D.

Rao, K. D.

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80(6), 631–634 (2005).
[CrossRef]

Rodrigo, P. J.

Roichman, Y.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[CrossRef] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[CrossRef] [PubMed]

Rubinow, S. I.

S. I. Rubinow and J. B. Keller, “The transverse force on a spinning sphere moving in a viscous fluid,” J. Fluid Mech. 11(03), 447–459 (1961).
[CrossRef]

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Sun, B.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[CrossRef] [PubMed]

Todorov, T.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31, 579–588 (1984).
[CrossRef]

Zambrini, R.

Annu. Rev. Biochem. (1)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80(6), 631–634 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High–efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

J. Fluid Mech. (1)

S. I. Rubinow and J. B. Keller, “The transverse force on a spinning sphere moving in a viscous fluid,” J. Fluid Mech. 11(03), 447–459 (1961).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt. (1)

S. M. Barnett, “Optical angular momentum flux,” J. Opt. B Quantum Semiclassical Opt. 4(2), 361 (2002).
[CrossRef]

J. Phys. D Appl. Phys. (2)

S. G. Cloutier, “Polarization holography: orthogonal plane-polarized beam configuration with circular vectorial photoinduced anisotropy,” J. Phys. D Appl. Phys. 38(18), 3371–3375 (2005).
[CrossRef]

N. Murazawa, S. Juodkazis, and H. Misawa, “Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers,” J. Phys. D Appl. Phys. 38(16), 2923–2927 (2005).
[CrossRef]

Nature (3)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Opt. Acta (Lond.) (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31, 579–588 (1984).
[CrossRef]

Opt. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 051707 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Other (2)

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003).

G. K. Batchelor, An Introduction to Fluid Mechanics (Cambridge University Press, Cambridge, 1967)

Supplementary Material (4)

» Media 1: MOV (2204 KB)     
» Media 2: MOV (1595 KB)     
» Media 3: MOV (1055 KB)     
» Media 4: MOV (1494 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental set up and geometry. (a) A s-polarized Argon ion laser beam at λ=488nm, is sent into a Mach Zehnder interferometer. The half-wave plate (λ/2) in one of the two arms converts into p the polarization of the beam propagating in it. The two s- and p- polarized beams are directed towards the 60x microscope objective by a dichroic mirror (DM), and interfere on the sample. The spatial periodicity of the resulting polarization pattern can be tuned by shifting the beamsplitter BS2. The piezoelectric mirror mount M1, driven by an arbitrary function generator, enables the movement of the polarization pattern along the x-axis. The sample position is adjusted via a xyz-translation stage. A computer controlled CCD camera and a fiber illuminator have been used to image the sample. (b) The polarization pattern generated in the sample plane (xy-plane) by the interference of the s- and p-polarized beams, propagating in xz-plane at angle θ/2 with respect to the z-axis.

Fig. 2
Fig. 2

(a) Scheme of the polarization pattern versus the half phase difference δ(x). (b) The optical torque τop (in red) and the y-component of the optical force Fop (in green) felt by a spherical particle with diameter lower than Λ/2. (c) Symmetric streamlines occur around the particle, rotating with angular velocity Ω, when it is centred on the circularly polarized fringe. Asymmetric streamlines occur when the particle is centred on an elliptically polarized fringe, due to its linear velocity along the y-axis, and the lift force FL arises along the x-axis, working as a restoring force for the rotating particle toward the regions with circular polarization.

Fig. 3
Fig. 3

Dynamics of an optically isotropic (i.e., radial) LC droplet due to the movement of the polarization pattern. For a non-rotating particle, only the optical force Fop occurs. The frames sequence is extracted from a movie (Media 1). Frames (a)-(d) show the droplet displacement along the y-axis induced by the spatially modulated Fop,y. Starting from a position where the Fop,y is zero (a), the LC droplet moves up (b) and down (c)-(d) by ~2μm depending on the Fop,y direction. The optical force field Fop,y and the ruler are reported as guides for the eyes.

Fig. 4
Fig. 4

Dynamics of an optically anisotropic (bipolar) LC droplet by shifting the polarization pattern. The lift force FL traps the rotating particle in the circular polarization fringes. The frames sequence is extracted from a movie (Media 2). In the frames (a)-(d) a spinning droplet is dragged along x ^ , due to a corresponding shift of the polarization pattern. The optical force field Fop,y and the ruler are reported as guides for the eyes. Similar behaviour is observed when the sample is translated with respect to the polarization pattern (Media 3)

Fig. 5
Fig. 5

Trapping of two optically anisotropic LC droplets in two adjacent fringes with opposite circular polarization. The frame is extracted from a movie (Media 4) and shows the optical trapping of two bipolar LC droplets spinning in opposite directions.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E = E p + E s = E o ( cos θ 2 exp ( i δ ) x ^ + exp ( i δ ) y ^ sin θ 2 exp ( i δ ) z ^ ) exp ( i β )
I = ( E p + E s ) ( E p + E s ) = E 0 2 ( cos 2 θ + 1 + sin 2 θ ) = 2 E 0 2
g = 1 c 2 Re { E * × H } = 1 c 2 ε μ E 0 2 ( y ^ sin θ cos 2 π x Λ + z ^ 2 cos θ 2 )
H = H p + H s = i ω μ ( × E p + × E s ) = = ε μ E o ( cos θ 2 exp ( i δ ) x ^ + exp ( i δ ) y ^ sin θ 2 exp ( i δ ) z ^ ) exp ( i β ) .
j = r × g
j z = 1 c 2 ε μ E 2 ( sin θ ) x cos 2 π x Λ
F o p = Q 2 A c [ y ^ sin θ cos 2 π x Λ d x d y + z ^ 2 cos θ 2 d x d y ]
τ o p = Q 2 A c z ^ sin θ x cos 2 π x Λ d x d y

Metrics