Abstract

We report an ultrafast time-domain spectroscopy system based on high-speed asynchronous optical sampling operating without mechanical scanner. The system uses two 1 GHz femtosecond oscillators that are offset-stabilized using high-bandwidth feedback electronics operating at the tenth repetition rate harmonics. Definition of the offset frequency, i.e. the time-delay scan rate, in the range of a few kilohertz is accomplished using direct-digital-synthesis electronics for the first time. The time-resolution of the system over the full available 1 ns time-delay window is determined by the laser pulse duration and is 45 fs. This represents a three-fold improvement compared to previous approaches where timing jitter was the limiting factor. Two showcase experiments are presented to verify the high time-resolution and sensitivity of the system.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Demsar, B. Podobnik, V. V. Kabanov, Th. Wolf, and D. Mihailovic, “Superconducting gap ∆c, the pseudogap ∆p, and pair fluctuations above Tc in overdoped Y1-xCaxBa2Cu3O7-δ from femtosecond time-domain spectroscopy,” Phys. Rev. Lett. 82(24), 4918–4921 (1999).
    [CrossRef]
  2. M. Krauß, H. C. Schneider, R. Bratschitsch, Z. Chen, and S. T. Cundiff, “Ultrafast spin dynamics in optically excited bulk GaAs at low temperatures,” Phys. Rev. B 81(3), 035213 (2010).
    [CrossRef]
  3. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
    [CrossRef] [PubMed]
  4. A. Crut, P. Maioli, N. D. Fatti, and F. Vallée, “Anisotropy effects on the time-resolved spectroscopy of the acoustic vibrations of nanoobjects,” Phys. Chem. Chem. Phys. 11(28), 5882–5888 (2009).
    [CrossRef] [PubMed]
  5. T. Dekorsy, G. C. Cho, and H. Kurz, “Coherent phonons in condensed media”, in Light Scattering in Solids VIII, Book Series: Topics in Applied Physics, 76, 169–209, (Springer, Berlin, 1999).
  6. F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J.-R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B 79(20), 201307 (2009).
    [CrossRef]

2010 (1)

M. Krauß, H. C. Schneider, R. Bratschitsch, Z. Chen, and S. T. Cundiff, “Ultrafast spin dynamics in optically excited bulk GaAs at low temperatures,” Phys. Rev. B 81(3), 035213 (2010).
[CrossRef]

2009 (2)

A. Crut, P. Maioli, N. D. Fatti, and F. Vallée, “Anisotropy effects on the time-resolved spectroscopy of the acoustic vibrations of nanoobjects,” Phys. Chem. Chem. Phys. 11(28), 5882–5888 (2009).
[CrossRef] [PubMed]

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J.-R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B 79(20), 201307 (2009).
[CrossRef]

2001 (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[CrossRef] [PubMed]

1999 (1)

J. Demsar, B. Podobnik, V. V. Kabanov, Th. Wolf, and D. Mihailovic, “Superconducting gap ∆c, the pseudogap ∆p, and pair fluctuations above Tc in overdoped Y1-xCaxBa2Cu3O7-δ from femtosecond time-domain spectroscopy,” Phys. Rev. Lett. 82(24), 4918–4921 (1999).
[CrossRef]

Bratschitsch, R.

M. Krauß, H. C. Schneider, R. Bratschitsch, Z. Chen, and S. T. Cundiff, “Ultrafast spin dynamics in optically excited bulk GaAs at low temperatures,” Phys. Rev. B 81(3), 035213 (2010).
[CrossRef]

Chen, Z.

M. Krauß, H. C. Schneider, R. Bratschitsch, Z. Chen, and S. T. Cundiff, “Ultrafast spin dynamics in optically excited bulk GaAs at low temperatures,” Phys. Rev. B 81(3), 035213 (2010).
[CrossRef]

Crut, A.

A. Crut, P. Maioli, N. D. Fatti, and F. Vallée, “Anisotropy effects on the time-resolved spectroscopy of the acoustic vibrations of nanoobjects,” Phys. Chem. Chem. Phys. 11(28), 5882–5888 (2009).
[CrossRef] [PubMed]

Cundiff, S. T.

M. Krauß, H. C. Schneider, R. Bratschitsch, Z. Chen, and S. T. Cundiff, “Ultrafast spin dynamics in optically excited bulk GaAs at low temperatures,” Phys. Rev. B 81(3), 035213 (2010).
[CrossRef]

Demsar, J.

J. Demsar, B. Podobnik, V. V. Kabanov, Th. Wolf, and D. Mihailovic, “Superconducting gap ∆c, the pseudogap ∆p, and pair fluctuations above Tc in overdoped Y1-xCaxBa2Cu3O7-δ from femtosecond time-domain spectroscopy,” Phys. Rev. Lett. 82(24), 4918–4921 (1999).
[CrossRef]

El-Sayed, M. A.

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[CrossRef] [PubMed]

Fatti, N. D.

A. Crut, P. Maioli, N. D. Fatti, and F. Vallée, “Anisotropy effects on the time-resolved spectroscopy of the acoustic vibrations of nanoobjects,” Phys. Chem. Chem. Phys. 11(28), 5882–5888 (2009).
[CrossRef] [PubMed]

Kabanov, V. V.

J. Demsar, B. Podobnik, V. V. Kabanov, Th. Wolf, and D. Mihailovic, “Superconducting gap ∆c, the pseudogap ∆p, and pair fluctuations above Tc in overdoped Y1-xCaxBa2Cu3O7-δ from femtosecond time-domain spectroscopy,” Phys. Rev. Lett. 82(24), 4918–4921 (1999).
[CrossRef]

Krauß, M.

M. Krauß, H. C. Schneider, R. Bratschitsch, Z. Chen, and S. T. Cundiff, “Ultrafast spin dynamics in optically excited bulk GaAs at low temperatures,” Phys. Rev. B 81(3), 035213 (2010).
[CrossRef]

Maioli, P.

A. Crut, P. Maioli, N. D. Fatti, and F. Vallée, “Anisotropy effects on the time-resolved spectroscopy of the acoustic vibrations of nanoobjects,” Phys. Chem. Chem. Phys. 11(28), 5882–5888 (2009).
[CrossRef] [PubMed]

Mihailovic, D.

J. Demsar, B. Podobnik, V. V. Kabanov, Th. Wolf, and D. Mihailovic, “Superconducting gap ∆c, the pseudogap ∆p, and pair fluctuations above Tc in overdoped Y1-xCaxBa2Cu3O7-δ from femtosecond time-domain spectroscopy,” Phys. Rev. Lett. 82(24), 4918–4921 (1999).
[CrossRef]

Podobnik, B.

J. Demsar, B. Podobnik, V. V. Kabanov, Th. Wolf, and D. Mihailovic, “Superconducting gap ∆c, the pseudogap ∆p, and pair fluctuations above Tc in overdoped Y1-xCaxBa2Cu3O7-δ from femtosecond time-domain spectroscopy,” Phys. Rev. Lett. 82(24), 4918–4921 (1999).
[CrossRef]

Schneider, H. C.

M. Krauß, H. C. Schneider, R. Bratschitsch, Z. Chen, and S. T. Cundiff, “Ultrafast spin dynamics in optically excited bulk GaAs at low temperatures,” Phys. Rev. B 81(3), 035213 (2010).
[CrossRef]

Vallée, F.

A. Crut, P. Maioli, N. D. Fatti, and F. Vallée, “Anisotropy effects on the time-resolved spectroscopy of the acoustic vibrations of nanoobjects,” Phys. Chem. Chem. Phys. 11(28), 5882–5888 (2009).
[CrossRef] [PubMed]

Wolf, Th.

J. Demsar, B. Podobnik, V. V. Kabanov, Th. Wolf, and D. Mihailovic, “Superconducting gap ∆c, the pseudogap ∆p, and pair fluctuations above Tc in overdoped Y1-xCaxBa2Cu3O7-δ from femtosecond time-domain spectroscopy,” Phys. Rev. Lett. 82(24), 4918–4921 (1999).
[CrossRef]

Acc. Chem. Res. (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys. (1)

A. Crut, P. Maioli, N. D. Fatti, and F. Vallée, “Anisotropy effects on the time-resolved spectroscopy of the acoustic vibrations of nanoobjects,” Phys. Chem. Chem. Phys. 11(28), 5882–5888 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (2)

M. Krauß, H. C. Schneider, R. Bratschitsch, Z. Chen, and S. T. Cundiff, “Ultrafast spin dynamics in optically excited bulk GaAs at low temperatures,” Phys. Rev. B 81(3), 035213 (2010).
[CrossRef]

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J.-R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B 79(20), 201307 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

J. Demsar, B. Podobnik, V. V. Kabanov, Th. Wolf, and D. Mihailovic, “Superconducting gap ∆c, the pseudogap ∆p, and pair fluctuations above Tc in overdoped Y1-xCaxBa2Cu3O7-δ from femtosecond time-domain spectroscopy,” Phys. Rev. Lett. 82(24), 4918–4921 (1999).
[CrossRef]

Other (1)

T. Dekorsy, G. C. Cho, and H. Kurz, “Coherent phonons in condensed media”, in Light Scattering in Solids VIII, Book Series: Topics in Applied Physics, 76, 169–209, (Springer, Berlin, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup of the high-speed ASOPS system. The gray box exhibits the improved error signal unit scheme for the repetition rate-offset stabilization. BS1 to BS4: optical beam-splitters, PD1 to PD3: amplified photodiodes, PS: power splitter, DDS1 and DDS2: direct digital synthesis components, BP1 to BP4: electronic band-pass filters, M1 to M3: electronic mixers, HVA: high voltage amplifier, f: master repetition rate, f + ∆f: slave repetition rate, ∆fset: desired offset frequency. Straight lines correspond to optical beams, dashed lines to electronic connections. The red and blue formulas illustrate the corresponding frequencies inside the error-signal unit branches.

Fig. 2
Fig. 2

(a) Cross-correlation based characterization setup of the high-speed ASOPS system. BS5 and BS6: optical beam-splitters, RR: retro reflector, F: focusing lens, P: slit to filter out second harmonics, PD: amplified photodiode. (b) Exemplary detected transient of the cross-correlation based characterization. Inset: zoom into cross-correlation peak. (c) & (d) Extracted time resolution- and residual error of time-axis calibration data from a measurement series for ∆f = 5 kHz, 3 kHz and 2 kHz.

Fig. 3
Fig. 3

High-speed ASOPS measured data of wurzite ZnO. a) Zoom into first 2.5 ps of the recorded time domain transient revealing optical phonon oscillations. b) Fast Fourier transform of the ZnO transient showing peaks at 2.97 THz, 10.02 THz and 13.15 THz. Inset: Amplitude zoom into the 10.02 THz and 13.15 THz peak by a factor of 100.

Fig. 4
Fig. 4

Transient reflectivity changes of a Si/Mo-multilayer superlattice following optical excitation for different averaging times 0.2 s (103 averages), 2 s (104 averages) and 20 s (105 averages). “Zoom 1” shows ≈1 THz phonon oscillations and “Zoom 2” shows an acoustic echo caused by the mirror/substrate interface.

Fig. 5
Fig. 5

Si/Mo-multilayer superlattice period (plotted versus left axis) and total stack thickness (plotted versus right axis) versus the radial distance from the wafer edge for different total line-scan acquisition times. The values of the total stack thickness are plotted upside-down to distinguish the curves from the period plots. The color-code (red, green, black) of these curves corresponds to the transients of Fig. 4 used for the evaluation at a fixed position.

Metrics