Abstract

Optical fiber tapers are used to collect photoluminescence emission at ~1.5 µm from photonic crystal cavities fabricated in erbium doped silicon nitride on silicon. In the experiment, photoluminescence collection via one arm of the fiber taper is enhanced 2.5 times relative to free space collection, corresponding to a net collection efficiency of 4%. Theoretically, the collection efficiency into one arm of the fiber-taper with this material system and cavity design can be as high as 12.5%, but the degradation of the experimental coupling efficiency relative to this value mainly comes from scattering loss within the short taper transition regions. By varying the fiber taper offset from the cavity, a broad tuning range of coupling strength and collection efficiency is obtained. This material system combined with fiber taper collection is promising for building on-chip optical amplifiers.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [CrossRef]
  2. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
    [CrossRef]
  3. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
    [CrossRef]
  4. L. Colace, M. Balbi, G. Masini, G. Assanto, H. C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10 Gb/s,” Appl. Phys. Lett. 88(10), 101111 (2006).
    [CrossRef]
  5. O. Fidaner, A. K. Okyay, J. E. Roth, R. K. Schaevitz, Y.-H. Kuo, K. C. Saraswat, J. S. Harris, and D. A. B. Miller, “Ge-SiGe quantum-well waveguide photodetectors on silicon for the near-infrared,” IEEE Photon. Technol. Lett. 19(20), 1631–1633 (2007).
    [CrossRef]
  6. M. Makarova, Y. Gong, S.-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vuckovic, “Photonic crystal and plasmonic silicon based light sources,” IEEE J. Sel. Top. Quantum Electron. 16(1), 132–139 (2010).
    [CrossRef]
  7. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18(3), 2601–2612 (2010).
    [CrossRef] [PubMed]
  8. K. Srinivasan, P. E. Barclay, M. Borselli, and O. J. Painter, “An optical-fiber-based probe for photonic crystal microcavities,” IEEE J. Sel. Areas Comm. 23(7), 1321–1329 (2005).
    [CrossRef]
  9. C. Grillet, C. Monat, C. Smith, B. Eggleton, D. Moss, S. Frederick, D. Dalacu, P. Poole, J. Lapointe, G. Aers, and R. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3),1267 (2007).
    [CrossRef] [PubMed]
  10. I. Hwang, S. K. Kim, J. Yang, S. H. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
    [CrossRef]
  11. T. A. Birks and Y. W. Li, “The Shape of Fiber Tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
    [CrossRef]
  12. Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
    [CrossRef] [PubMed]
  13. S. Yerci, R. Li, O. Kucheyev, T. van Buuren, S. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
    [CrossRef]
  14. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  15. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38(7), 850–856 (2002).
    [CrossRef]
  16. M. Kim, J. Yang, Y. Lee, and I. Hwang, “Influence of etching slope on two-dimensional photonic crystal slab resonators,” J Korean Phys Soc. 50(4), 1027–1031 (2007).
    [CrossRef]
  17. S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
    [CrossRef]
  18. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
    [CrossRef]
  19. I. Hwang, G. Kim, and Y. Lee, “Optimization of coupling between photonic crystal resonator and curved microfiber,” IEEE J. Quantum Electron. 42(2), 131–136 (2006).
    [CrossRef]
  20. M. W. Lee, C. Grillet, C. G. Poulton, C. Monat, C. L. C. Smith, E. Mägi, D. Freeman, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Characterizing photonic crystal waveguides with an expanded k-space evanescent coupling technique,” Opt. Express 16(18), 13800–13808 (2008).
    [CrossRef] [PubMed]
  21. I. Hwang and Y. Lee, “Unidirectional, efficiency-controlled coupling from microcavity using reflection feedback,” IEEE J. Sel. Top. Quantum Electron. 13(2), 209–213 (2007).
    [CrossRef]

2010 (2)

2009 (4)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[CrossRef]

Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
[CrossRef] [PubMed]

S. Yerci, R. Li, O. Kucheyev, T. van Buuren, S. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

2008 (1)

2007 (6)

I. Hwang and Y. Lee, “Unidirectional, efficiency-controlled coupling from microcavity using reflection feedback,” IEEE J. Sel. Top. Quantum Electron. 13(2), 209–213 (2007).
[CrossRef]

M. Kim, J. Yang, Y. Lee, and I. Hwang, “Influence of etching slope on two-dimensional photonic crystal slab resonators,” J Korean Phys Soc. 50(4), 1027–1031 (2007).
[CrossRef]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[CrossRef]

O. Fidaner, A. K. Okyay, J. E. Roth, R. K. Schaevitz, Y.-H. Kuo, K. C. Saraswat, J. S. Harris, and D. A. B. Miller, “Ge-SiGe quantum-well waveguide photodetectors on silicon for the near-infrared,” IEEE Photon. Technol. Lett. 19(20), 1631–1633 (2007).
[CrossRef]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

C. Grillet, C. Monat, C. Smith, B. Eggleton, D. Moss, S. Frederick, D. Dalacu, P. Poole, J. Lapointe, G. Aers, and R. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3),1267 (2007).
[CrossRef] [PubMed]

2006 (2)

L. Colace, M. Balbi, G. Masini, G. Assanto, H. C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10 Gb/s,” Appl. Phys. Lett. 88(10), 101111 (2006).
[CrossRef]

I. Hwang, G. Kim, and Y. Lee, “Optimization of coupling between photonic crystal resonator and curved microfiber,” IEEE J. Quantum Electron. 42(2), 131–136 (2006).
[CrossRef]

2005 (2)

I. Hwang, S. K. Kim, J. Yang, S. H. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. J. Painter, “An optical-fiber-based probe for photonic crystal microcavities,” IEEE J. Sel. Areas Comm. 23(7), 1321–1329 (2005).
[CrossRef]

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2002 (1)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38(7), 850–856 (2002).
[CrossRef]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

1992 (1)

T. A. Birks and Y. W. Li, “The Shape of Fiber Tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[CrossRef]

Aers, G.

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Arakawa, Y.

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Asghari, M.

Assanto, G.

L. Colace, M. Balbi, G. Masini, G. Assanto, H. C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10 Gb/s,” Appl. Phys. Lett. 88(10), 101111 (2006).
[CrossRef]

Baek, B.

Balbi, M.

L. Colace, M. Balbi, G. Masini, G. Assanto, H. C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10 Gb/s,” Appl. Phys. Lett. 88(10), 101111 (2006).
[CrossRef]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. J. Painter, “An optical-fiber-based probe for photonic crystal microcavities,” IEEE J. Sel. Areas Comm. 23(7), 1321–1329 (2005).
[CrossRef]

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Basu, S.

S. Yerci, R. Li, O. Kucheyev, T. van Buuren, S. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

Birks, T. A.

T. A. Birks and Y. W. Li, “The Shape of Fiber Tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[CrossRef]

Borselli, M.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. J. Painter, “An optical-fiber-based probe for photonic crystal microcavities,” IEEE J. Sel. Areas Comm. 23(7), 1321–1329 (2005).
[CrossRef]

Brambilla, G.

Cheng, S.-L.

M. Makarova, Y. Gong, S.-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vuckovic, “Photonic crystal and plasmonic silicon based light sources,” IEEE J. Sel. Top. Quantum Electron. 16(1), 132–139 (2010).
[CrossRef]

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Colace, L.

L. Colace, M. Balbi, G. Masini, G. Assanto, H. C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10 Gb/s,” Appl. Phys. Lett. 88(10), 101111 (2006).
[CrossRef]

Dal Negro, L.

M. Makarova, Y. Gong, S.-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vuckovic, “Photonic crystal and plasmonic silicon based light sources,” IEEE J. Sel. Top. Quantum Electron. 16(1), 132–139 (2010).
[CrossRef]

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18(3), 2601–2612 (2010).
[CrossRef] [PubMed]

S. Yerci, R. Li, O. Kucheyev, T. van Buuren, S. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

Dalacu, D.

Dong, P.

Dorenbos, S. N.

Eggleton, B.

Eggleton, B. J.

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Feng, D.

Fidaner, O.

O. Fidaner, A. K. Okyay, J. E. Roth, R. K. Schaevitz, Y.-H. Kuo, K. C. Saraswat, J. S. Harris, and D. A. B. Miller, “Ge-SiGe quantum-well waveguide photodetectors on silicon for the near-infrared,” IEEE Photon. Technol. Lett. 19(20), 1631–1633 (2007).
[CrossRef]

Frederick, S.

Freeman, D.

Gomyo, A.

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[CrossRef]

Gong, Y.

Grillet, C.

Hadfield, R. H.

Harris, J. S.

O. Fidaner, A. K. Okyay, J. E. Roth, R. K. Schaevitz, Y.-H. Kuo, K. C. Saraswat, J. S. Harris, and D. A. B. Miller, “Ge-SiGe quantum-well waveguide photodetectors on silicon for the near-infrared,” IEEE Photon. Technol. Lett. 19(20), 1631–1633 (2007).
[CrossRef]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Hwang, I.

I. Hwang and Y. Lee, “Unidirectional, efficiency-controlled coupling from microcavity using reflection feedback,” IEEE J. Sel. Top. Quantum Electron. 13(2), 209–213 (2007).
[CrossRef]

M. Kim, J. Yang, Y. Lee, and I. Hwang, “Influence of etching slope on two-dimensional photonic crystal slab resonators,” J Korean Phys Soc. 50(4), 1027–1031 (2007).
[CrossRef]

I. Hwang, G. Kim, and Y. Lee, “Optimization of coupling between photonic crystal resonator and curved microfiber,” IEEE J. Quantum Electron. 42(2), 131–136 (2006).
[CrossRef]

I. Hwang, S. K. Kim, J. Yang, S. H. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

Iwamoto, S.

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[CrossRef]

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Jung, Y.

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Kim, G.

I. Hwang, G. Kim, and Y. Lee, “Optimization of coupling between photonic crystal resonator and curved microfiber,” IEEE J. Quantum Electron. 42(2), 131–136 (2006).
[CrossRef]

Kim, M.

M. Kim, J. Yang, Y. Lee, and I. Hwang, “Influence of etching slope on two-dimensional photonic crystal slab resonators,” J Korean Phys Soc. 50(4), 1027–1031 (2007).
[CrossRef]

Kim, S. H.

I. Hwang, S. K. Kim, J. Yang, S. H. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

Kim, S. K.

I. Hwang, S. K. Kim, J. Yang, S. H. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

Kimerling, L. C.

L. Colace, M. Balbi, G. Masini, G. Assanto, H. C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10 Gb/s,” Appl. Phys. Lett. 88(10), 101111 (2006).
[CrossRef]

Krishnamoorthy, A. V.

Kucheyev, O.

S. Yerci, R. Li, O. Kucheyev, T. van Buuren, S. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

Kung, C. C.

Kuo, Y.-H.

O. Fidaner, A. K. Okyay, J. E. Roth, R. K. Schaevitz, Y.-H. Kuo, K. C. Saraswat, J. S. Harris, and D. A. B. Miller, “Ge-SiGe quantum-well waveguide photodetectors on silicon for the near-infrared,” IEEE Photon. Technol. Lett. 19(20), 1631–1633 (2007).
[CrossRef]

Lapointe, J.

Lee, M. W.

Lee, S.

I. Hwang, S. K. Kim, J. Yang, S. H. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

Lee, Y.

M. Kim, J. Yang, Y. Lee, and I. Hwang, “Influence of etching slope on two-dimensional photonic crystal slab resonators,” J Korean Phys Soc. 50(4), 1027–1031 (2007).
[CrossRef]

I. Hwang and Y. Lee, “Unidirectional, efficiency-controlled coupling from microcavity using reflection feedback,” IEEE J. Sel. Top. Quantum Electron. 13(2), 209–213 (2007).
[CrossRef]

I. Hwang, G. Kim, and Y. Lee, “Optimization of coupling between photonic crystal resonator and curved microfiber,” IEEE J. Quantum Electron. 42(2), 131–136 (2006).
[CrossRef]

I. Hwang, S. K. Kim, J. Yang, S. H. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

Li, G.

Li, R.

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18(3), 2601–2612 (2010).
[CrossRef] [PubMed]

M. Makarova, Y. Gong, S.-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vuckovic, “Photonic crystal and plasmonic silicon based light sources,” IEEE J. Sel. Top. Quantum Electron. 16(1), 132–139 (2010).
[CrossRef]

S. Yerci, R. Li, O. Kucheyev, T. van Buuren, S. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

Li, Y. W.

T. A. Birks and Y. W. Li, “The Shape of Fiber Tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[CrossRef]

Liang, H.

Liao, L.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Liao, S.

Liu, A.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Loncar, M.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38(7), 850–856 (2002).
[CrossRef]

Luan, H. C.

L. Colace, M. Balbi, G. Masini, G. Assanto, H. C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10 Gb/s,” Appl. Phys. Lett. 88(10), 101111 (2006).
[CrossRef]

Luther-Davies, B.

Mabuchi, H.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38(7), 850–856 (2002).
[CrossRef]

Madden, S.

Mägi, E.

Makarova, M.

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Masini, G.

L. Colace, M. Balbi, G. Masini, G. Assanto, H. C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10 Gb/s,” Appl. Phys. Lett. 88(10), 101111 (2006).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

O. Fidaner, A. K. Okyay, J. E. Roth, R. K. Schaevitz, Y.-H. Kuo, K. C. Saraswat, J. S. Harris, and D. A. B. Miller, “Ge-SiGe quantum-well waveguide photodetectors on silicon for the near-infrared,” IEEE Photon. Technol. Lett. 19(20), 1631–1633 (2007).
[CrossRef]

Monat, C.

Moss, D.

Nam, S. W.

Nguyen, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Nishi, Y.

M. Makarova, Y. Gong, S.-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vuckovic, “Photonic crystal and plasmonic silicon based light sources,” IEEE J. Sel. Top. Quantum Electron. 16(1), 132–139 (2010).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Okyay, A. K.

O. Fidaner, A. K. Okyay, J. E. Roth, R. K. Schaevitz, Y.-H. Kuo, K. C. Saraswat, J. S. Harris, and D. A. B. Miller, “Ge-SiGe quantum-well waveguide photodetectors on silicon for the near-infrared,” IEEE Photon. Technol. Lett. 19(20), 1631–1633 (2007).
[CrossRef]

Painter, O. J.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. J. Painter, “An optical-fiber-based probe for photonic crystal microcavities,” IEEE J. Sel. Areas Comm. 23(7), 1321–1329 (2005).
[CrossRef]

Paniccia, M.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Poole, P.

Poulton, C. G.

Qian, W.

Richardson, D. J.

Roth, J. E.

O. Fidaner, A. K. Okyay, J. E. Roth, R. K. Schaevitz, Y.-H. Kuo, K. C. Saraswat, J. S. Harris, and D. A. B. Miller, “Ge-SiGe quantum-well waveguide photodetectors on silicon for the near-infrared,” IEEE Photon. Technol. Lett. 19(20), 1631–1633 (2007).
[CrossRef]

Rubin, D.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Saraswat, K. C.

O. Fidaner, A. K. Okyay, J. E. Roth, R. K. Schaevitz, Y.-H. Kuo, K. C. Saraswat, J. S. Harris, and D. A. B. Miller, “Ge-SiGe quantum-well waveguide photodetectors on silicon for the near-infrared,” IEEE Photon. Technol. Lett. 19(20), 1631–1633 (2007).
[CrossRef]

Schaevitz, R. K.

O. Fidaner, A. K. Okyay, J. E. Roth, R. K. Schaevitz, Y.-H. Kuo, K. C. Saraswat, J. S. Harris, and D. A. B. Miller, “Ge-SiGe quantum-well waveguide photodetectors on silicon for the near-infrared,” IEEE Photon. Technol. Lett. 19(20), 1631–1633 (2007).
[CrossRef]

Scherer, A.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38(7), 850–856 (2002).
[CrossRef]

Shafiiha, R.

Smith, C.

Smith, C. L. C.

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. J. Painter, “An optical-fiber-based probe for photonic crystal microcavities,” IEEE J. Sel. Areas Comm. 23(7), 1321–1329 (2005).
[CrossRef]

Stevens, M. J.

van Buuren, T.

S. Yerci, R. Li, O. Kucheyev, T. van Buuren, S. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Vuckovic, J.

M. Makarova, Y. Gong, S.-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vuckovic, “Photonic crystal and plasmonic silicon based light sources,” IEEE J. Sel. Top. Quantum Electron. 16(1), 132–139 (2010).
[CrossRef]

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18(3), 2601–2612 (2010).
[CrossRef] [PubMed]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38(7), 850–856 (2002).
[CrossRef]

Williams, R.

Yang, J.

M. Kim, J. Yang, Y. Lee, and I. Hwang, “Influence of etching slope on two-dimensional photonic crystal slab resonators,” J Korean Phys Soc. 50(4), 1027–1031 (2007).
[CrossRef]

I. Hwang, S. K. Kim, J. Yang, S. H. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

Yerci, S.

M. Makarova, Y. Gong, S.-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vuckovic, “Photonic crystal and plasmonic silicon based light sources,” IEEE J. Sel. Top. Quantum Electron. 16(1), 132–139 (2010).
[CrossRef]

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18(3), 2601–2612 (2010).
[CrossRef] [PubMed]

S. Yerci, R. Li, O. Kucheyev, T. van Buuren, S. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

Zheng, D.

Zheng, X.

Zwiller, V.

Appl. Phys. Lett. (4)

L. Colace, M. Balbi, G. Masini, G. Assanto, H. C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10 Gb/s,” Appl. Phys. Lett. 88(10), 101111 (2006).
[CrossRef]

I. Hwang, S. K. Kim, J. Yang, S. H. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

S. Yerci, R. Li, O. Kucheyev, T. van Buuren, S. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[CrossRef]

Electron. Lett. (1)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

IEEE J. Quantum Electron. (3)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

I. Hwang, G. Kim, and Y. Lee, “Optimization of coupling between photonic crystal resonator and curved microfiber,” IEEE J. Quantum Electron. 42(2), 131–136 (2006).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38(7), 850–856 (2002).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. J. Painter, “An optical-fiber-based probe for photonic crystal microcavities,” IEEE J. Sel. Areas Comm. 23(7), 1321–1329 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Makarova, Y. Gong, S.-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vuckovic, “Photonic crystal and plasmonic silicon based light sources,” IEEE J. Sel. Top. Quantum Electron. 16(1), 132–139 (2010).
[CrossRef]

I. Hwang and Y. Lee, “Unidirectional, efficiency-controlled coupling from microcavity using reflection feedback,” IEEE J. Sel. Top. Quantum Electron. 13(2), 209–213 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

O. Fidaner, A. K. Okyay, J. E. Roth, R. K. Schaevitz, Y.-H. Kuo, K. C. Saraswat, J. S. Harris, and D. A. B. Miller, “Ge-SiGe quantum-well waveguide photodetectors on silicon for the near-infrared,” IEEE Photon. Technol. Lett. 19(20), 1631–1633 (2007).
[CrossRef]

J Korean Phys Soc. (1)

M. Kim, J. Yang, Y. Lee, and I. Hwang, “Influence of etching slope on two-dimensional photonic crystal slab resonators,” J Korean Phys Soc. 50(4), 1027–1031 (2007).
[CrossRef]

J. Lightwave Technol. (1)

T. A. Birks and Y. W. Li, “The Shape of Fiber Tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Optical microscope image of the fiber taper. (b) SEM picture of the fabricated SiNx/Si photonic crystal cavity. (c) Calculated Ey field of the fundamental mode of the photonic crystal.

Fig. 2
Fig. 2

(a) K-space map for the Ey component of the fundamental mode, taken just above the PC slab. The white circle is the light cone while the green circle is the NA = 0.5 cone. (b) Zoomed in image of the previous plot highlighting the difference between the radiated components captured and not captured by the objective lens. The magnitude of the k components inside the NA = 0.5 cone is clearly much lower than those outside the cone.

Fig. 3
Fig. 3

Variation of the fiber, in-plane, and total Q factors as a function of taper displacement, d, along the y axis. When the taper is directly over the cavity, the fiber Q goes down expectedly and the in-plane Q is parasitically reduced by a factor of two. For large taper offsets, the Q-values approach their intrinsic limits. Inset shows the cross-section of the FDTD simulated structure. The taper is aligned along the cavity axis direction (i.e., the x direction in Fig. 1) and is displaced along the y direction.

Fig. 4
Fig. 4

PL spectrum of the Er:SiNx on Si PC cavity, collected from free space in the direction perpendicular to the PC plane (through an objective lens with NA = 0.5). The fundamental cavity mode corresponds to the highest peak near 1530nm, and the background emission has the expected erbium profile. The inset shows the fundamental peak zoomed in with a Lorentzian fit.

Fig. 5
Fig. 5

(a) Experimental setup for measurement of transmission through the Er:SiNx on Si PC cavities via fiber taper. The fiber taper is aligned and in contact with the L3 cavity. The output spectrum of a broadband source at the input of the fiber is measured by an OSA. Inset shows optical picture of aligned taper. (b) Full transmission spectrum of the L3 cavity. (c) Multiple transmission spectra for the same cavity but with different fiber taper offsets along the y axis.

Fig. 6
Fig. 6

(a) Experimental setup for outcoupling PL from Er:SiNx on Si PC cavities via fiber tapers. Pump light is focused on the cavity while PL emission is collected by the same fiber taper and sent to a spectrometer. (b) Full PL spectrum for fiber-coupled emission from the PC cavity. The integrated intensity is 2.5x larger than for the free space measurement and the peak has a Q of 4,300. (c) A different data point for which the taper was offset from the cavity so that the cavity was minimally loaded.

Fig. 7
Fig. 7

(a) Collected PL intensity and the total cavity Q-factor as the fiber taper is offset from the cavity along the y-direction. The blue line is a fit to the data. (b) Several spectra for the data in (a). As the taper moves away from the cavity the integrated intensity decreases and the Q increases. The peaks are centered together for easier visualization (but as shown in Fig. 6, the cavity resonance redshifts for higher cavity-taper overlap).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = 1 Q t Q 0

Metrics