Abstract

We report on the micron-luminescent properties of carbon ion implanted optical channel waveguides in the Nd:MgO:LiNbO3 laser crystals. The confocal fluorescence images of the waveguide’s cross section are presented based on the analysis of the spatial variation of the Nd3+ fluorescence properties. We have found that the carbon ion implanted waveguides exhibit hybrid fluorescence properties of both hydrogen and oxygen ion implanted waveguides, which clearly denotes a “boundary” effect of light and heavy ions for waveguide formation in lithium niobate crystals.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
    [CrossRef]
  2. K. K. Wong, “Properties of Lithium Niobate,” (INSPEC, London, 2002).
  3. M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Y. Shur, “Growth and concentration dependencies of rare-earth doped lithium niobate single crystals,” J. Cryst. Growth 291(2), 390–397 (2006).
    [CrossRef]
  4. T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 3(1), 140–148 (1986).
    [CrossRef]
  5. I. P. Kaminow and J. R. Carruthers, “Optical waveguiding layers in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 22(7), 326–328 (1973).
    [CrossRef]
  6. E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO3 channel waveguides,” Opt. Express 15(14), 8805–8811 (2007).
    [CrossRef] [PubMed]
  7. S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett. 28(16), 1433–1435 (2003).
    [CrossRef] [PubMed]
  8. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
    [CrossRef]
  9. P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt. 45(10), 2273–2278 (2006).
    [CrossRef] [PubMed]
  10. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
    [CrossRef]
  11. P. D. Townsend, P. J. Chandler, and L. Zhang, “Optical Effects of Ion Implantation,” (Cambridge Univ. Press, Cambridge, 1994).
  12. A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
    [CrossRef]
  13. S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007).
    [CrossRef]
  14. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
    [CrossRef]
  15. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
    [CrossRef]
  16. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89(9), 5224–5226 (2001).
    [CrossRef]
  17. M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
    [CrossRef]
  18. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
    [CrossRef]
  19. D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
    [CrossRef]
  20. F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008).
    [CrossRef]
  21. R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [CrossRef]
  22. J. F. Ziegler, computer code, SRIM http://www.srim.org .
  23. G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
    [CrossRef]
  24. E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. C. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007).
    [CrossRef] [PubMed]

2009

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

2008

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[CrossRef]

F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008).
[CrossRef]

2007

2006

P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt. 45(10), 2273–2278 (2006).
[CrossRef] [PubMed]

M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Y. Shur, “Growth and concentration dependencies of rare-earth doped lithium niobate single crystals,” J. Cryst. Growth 291(2), 390–397 (2006).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

2005

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

2004

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[CrossRef]

2003

2002

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

2001

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89(9), 5224–5226 (2001).
[CrossRef]

1986

1985

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

1973

I. P. Kaminow and J. R. Carruthers, “Optical waveguiding layers in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 22(7), 326–328 (1973).
[CrossRef]

Agulló-López, F.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Agulló-Rueda, F.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

Argiolas, N.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[CrossRef]

Bazzan, M.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Bentini, G. G.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Bianconi, M.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Biryukova, I. V.

M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Y. Shur, “Growth and concentration dependencies of rare-earth doped lithium niobate single crystals,” J. Cryst. Growth 291(2), 390–397 (2006).
[CrossRef]

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Busacca, A. C.

Byer, R. L.

Caballero, O.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Cabrera, J. M.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Cantelar, E.

Carruthers, J. R.

I. P. Kaminow and J. R. Carruthers, “Optical waveguiding layers in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 22(7), 326–328 (1973).
[CrossRef]

Chen, F.

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[CrossRef]

F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89(9), 5224–5226 (2001).
[CrossRef]

Chiarini, M.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Cino, A.

Cino, A. C.

Cordova-Plaza, A.

Correra, L.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Cussó, F.

De Nicola, P.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Denisov, A. V.

M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Y. Shur, “Growth and concentration dependencies of rare-earth doped lithium niobate single crystals,” J. Cryst. Growth 291(2), 390–397 (2006).
[CrossRef]

Digonnet, M. J. F.

Eason, R. W.

Fan, T. Y.

García, G.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

García-Cabañes, A.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

García-Navarro, A.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Gawith, C. B. E.

Guzzi, R.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Hu, H.

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89(9), 5224–5226 (2001).
[CrossRef]

Jaque, D.

Kalinnikov, V. T.

M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Y. Shur, “Growth and concentration dependencies of rare-earth doped lithium niobate single crystals,” J. Cryst. Growth 291(2), 390–397 (2006).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow and J. R. Carruthers, “Optical waveguiding layers in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 22(7), 326–328 (1973).
[CrossRef]

Kar, A. K.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Kostritskii, S. M.

S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007).
[CrossRef]

Lifante, G.

Lu, F.

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89(9), 5224–5226 (2001).
[CrossRef]

Ma, Y.

Mailis, S.

Mazzoldi, P.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Montanari, G. B.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Moretti, P.

S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007).
[CrossRef]

Nubile, A.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Olivares, J.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Palatnikov, M. N.

M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Y. Shur, “Growth and concentration dependencies of rare-earth doped lithium niobate single crystals,” J. Cryst. Growth 291(2), 390–397 (2006).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Rivera, A.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

Riziotis, C.

Rodríguez, E. M.

Sada, C.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Sanseverino, S. R.

Shaw, H. J.

Shen, D. Y.

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89(9), 5224–5226 (2001).
[CrossRef]

Shi, B. R.

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89(9), 5224–5226 (2001).
[CrossRef]

Shur, V. Y.

M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Y. Shur, “Growth and concentration dependencies of rare-earth doped lithium niobate single crystals,” J. Cryst. Growth 291(2), 390–397 (2006).
[CrossRef]

Sidorov, N. V.

M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Y. Shur, “Growth and concentration dependencies of rare-earth doped lithium niobate single crystals,” J. Cryst. Growth 291(2), 390–397 (2006).
[CrossRef]

Smith, P. G. R.

M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Y. Shur, “Growth and concentration dependencies of rare-earth doped lithium niobate single crystals,” J. Cryst. Growth 291(2), 390–397 (2006).
[CrossRef]

S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett. 28(16), 1433–1435 (2003).
[CrossRef] [PubMed]

Sohler, W.

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Sugliani, S.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Tan, Y.

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[CrossRef]

Thomson, R. R.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Wang, K. M.

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89(9), 5224–5226 (2001).
[CrossRef]

Wellington, I. T.

Xu, H.

Yang, D.

Zhang, P.

Zhao, J.

Appl. Opt.

Appl. Phys. B

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Appl. Phys. Lett.

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

I. P. Kaminow and J. R. Carruthers, “Optical waveguiding layers in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 22(7), 326–328 (1973).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Crit. Rev. Solid State Mater. Sci.

F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008).
[CrossRef]

J. Appl. Phys.

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89(9), 5224–5226 (2001).
[CrossRef]

S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

J. Cryst. Growth

M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Y. Shur, “Growth and concentration dependencies of rare-earth doped lithium niobate single crystals,” J. Cryst. Growth 291(2), 390–397 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Nucl. Instrum. Methods Phys. Res. B

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Stat. Solidi A

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

Phys. Status Solidi, A Appl. Res.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[CrossRef]

Other

K. K. Wong, “Properties of Lithium Niobate,” (INSPEC, London, 2002).

P. D. Townsend, P. J. Chandler, and L. Zhang, “Optical Effects of Ion Implantation,” (Cambridge Univ. Press, Cambridge, 1994).

J. F. Ziegler, computer code, SRIM http://www.srim.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Distribution of the electronic (solid line) and nuclear (dashed line) stopping powers of the 3 MeV C+ ions in Nd:MgO:LiNbO3 crystals based on the SRIM 2008 code.

Fig. 2
Fig. 2

The comparison of the room-temperature photoluminescence spectra obtained in the C implanted Nd:MgO:LiNbO3 channel waveguide (after annealing at 260°C for 30 min) and the bulk, corresponding to the emission bands of (a) 4F3/24I9/2 and (b) 4F3/24I11/2.

Fig. 3
Fig. 3

The spatial distribution of the intensity [(a) and (d)], spectral shift [(b) and (e)] and broadening of the emission line [(c) and (f)] of the cross section for the 3MeV C ion implanted Nd:MgO:LiNbO3 samples after annealing at 260°C for 30 min and 90 min. The dashed lines show the spatial locations of the regions with maximum defect concentrations induced by the nuclear damage. Scale bars are 2 µm, in all the cases.

Fig. 4
Fig. 4

The fluorescence maps obtained in terms of the spectral shift induced in Nd3+ fluorescence for the (a) H (at energy 500 keV and fluence of 6 × 1016 ions/cm2, after annealing at 400°C for 1h), (b) C (at energy 3 MeV and fluence of 7 × 1014 ions/cm2, after annealing at 260°C for 90 min) and (c) O (at energy 3 MeV and fluence of 6 × 1014 ions/cm2, after annealing at 260°C for 90 min) ion implanted channel waveguides in Nd:MgO:LiNbO3 crystals. The dashed lines show the spatial locations of the regions with maximum defect concentrations induced by the nuclear damage.

Metrics