Abstract

We demonstrate a novel type of slow light photonic crystal waveguide which can produce unusual “U” type group index - frequency curves with constant group index ng over large bandwidth. By shifting the boundaries of this waveguide, flexible control of ng (10 <ng< 210) with large bandwidth (1nm<Δλ<43nm centered at 1550nm) and normalized Delay-Bandwidth Product (0.1363<DBP<0.3143) are achieved. Additionally, depending on the chosen waveguide geometry, extremely low group velocity dispersion (GVD<0.5 ps.nm−1.mm−1), with controllable group velocity dispersion of both signs is obtained.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. 438(7064), 65–69 (2005).
    [CrossRef]
  2. R. Won, “Slow light now and then,” Nat. Photonics 2(8), 454–455 (2008).
    [CrossRef]
  3. T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2(8), 448–450 (2008).
    [CrossRef]
  4. T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2(8), 465–473 (2008).
    [CrossRef]
  5. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
    [CrossRef]
  6. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
    [CrossRef] [PubMed]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
    [CrossRef] [PubMed]
  8. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 113903, 87 (2001).
    [CrossRef] [PubMed]
  9. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18(10), 1402–1411 (2000).
    [CrossRef]
  10. E. Dulkeith, F. N. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
    [CrossRef] [PubMed]
  11. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006).
    [CrossRef] [PubMed]
  12. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
    [CrossRef] [PubMed]
  13. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15(13), 8323–8328 (2007).
    [CrossRef] [PubMed]
  14. J. Hou, D. Gao, H. Wu, and R. Hao, “Flat Band Slow Light in Symmetric Line Defect Photonic Crystals Waveguide,” IEEE Photon. Tech. Lett. 21, 1571-1573 (2009).
    [CrossRef]
  15. L. Dai and C. Jiang, “Photonic crystal slow light waveguides with large delay-bandwidth product,” Appl. Phys. B 95(1), 105–111 (2009).
    [CrossRef]
  16. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
    [CrossRef] [PubMed]
  17. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13(23), 9398–9408 (2005).
    [CrossRef] [PubMed]
  18. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
    [CrossRef] [PubMed]
  19. D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
    [CrossRef]
  20. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32(18), 2638–2640 (2007).
    [CrossRef] [PubMed]
  21. C. Martijn de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17(20), 17338–17343 (2009).
    [CrossRef] [PubMed]
  22. D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler,” Opt. Express 15(9), 5264–5270 (2007).
    [CrossRef] [PubMed]
  23. J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Opt. Lett. 34(3), 359–361 (2009).
    [CrossRef] [PubMed]
  24. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007).
    [CrossRef] [PubMed]
  25. J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20(14), 1237–1239 (2008).
    [CrossRef]
  26. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14(4), 1658–1672 (2006).
    [CrossRef] [PubMed]

2009 (4)

2008 (7)

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
[CrossRef] [PubMed]

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[CrossRef]

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20(14), 1237–1239 (2008).
[CrossRef]

R. Won, “Slow light now and then,” Nat. Photonics 2(8), 454–455 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2(8), 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2(8), 465–473 (2008).
[CrossRef]

2007 (5)

2006 (3)

2005 (2)

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13(23), 9398–9408 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. 438(7064), 65–69 (2005).
[CrossRef]

2003 (2)

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

2001 (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 113903, 87 (2001).
[CrossRef] [PubMed]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

2000 (1)

Adachi, J.

Ahopelto, J.

Asakawa, K.

Baba, T.

Baets, R.

Bernier, D.

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Bogaerts, W.

Borel, P. I.

Botten, L. C.

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Cassan, E.

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[CrossRef]

Dai, L.

L. Dai and C. Jiang, “Photonic crystal slow light waveguides with large delay-bandwidth product,” Appl. Phys. B 95(1), 105–111 (2009).
[CrossRef]

Doll, T.

Dossou, K. B.

Dulkeith, E.

Dumon, P.

Engelen, R. J. P.

Fage-Pedersen, J.

Frandsen, L. H.

Gao, D.

J. Hou, D. Gao, H. Wu, and R. Hao, “Flat Band Slow Light in Symmetric Line Defect Photonic Crystals Waveguide,” IEEE Photon. Tech. Lett. 21, 1571-1573 (2009).
[CrossRef]

Gomez-Iglesias, A.

Green, W. M. J.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. 438(7064), 65–69 (2005).
[CrossRef]

Hao, R.

J. Hou, D. Gao, H. Wu, and R. Hao, “Flat Band Slow Light in Symmetric Line Defect Photonic Crystals Waveguide,” IEEE Photon. Tech. Lett. 21, 1571-1573 (2009).
[CrossRef]

Hou, J.

J. Hou, D. Gao, H. Wu, and R. Hao, “Flat Band Slow Light in Symmetric Line Defect Photonic Crystals Waveguide,” IEEE Photon. Tech. Lett. 21, 1571-1573 (2009).
[CrossRef]

Houdré, R.

Hugonin, J. P.

Ikeda, N.

Imamoglu, A.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

Jágerská, J.

Jiang, C.

L. Dai and C. Jiang, “Photonic crystal slow light waveguides with large delay-bandwidth product,” Appl. Phys. B 95(1), 105–111 (2009).
[CrossRef]

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20(14), 1237–1239 (2008).
[CrossRef]

Kawaaski, T.

Korterik, J. P.

Krauss, T. F.

Kubo, S.

Kuipers, L.

Lalanne, P.

Lavrinenko, A. V.

Le Thomas, N.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Li, J.

Lipsanen, H.

Loncar, M.

Lukin, M. D.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

Ma, J.

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20(14), 1237–1239 (2008).
[CrossRef]

Maire, G.

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[CrossRef]

Marris-Morini, D.

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[CrossRef]

Martijn de Sterke, C.

McNab, S.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. 438(7064), 65–69 (2005).
[CrossRef]

McPhedran, R. C.

Michaeli, A.

Moll, N.

Mori, D.

Mulot, M.

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 113903, 87 (2001).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. 438(7064), 65–69 (2005).
[CrossRef]

O’Faolain, L.

Salib, M.

Sasaki, H.

Säynätjoki, A.

Schares, L.

Scherer, A.

Settle, M. D.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 113903, 87 (2001).
[CrossRef] [PubMed]

Sugimoto, Y.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 113903, 87 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 113903, 87 (2001).
[CrossRef] [PubMed]

van Hulst, N. F.

Vivien, L.

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[CrossRef]

Vlasov, Y.

Vlasov, Y. A.

E. Dulkeith, F. N. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. 438(7064), 65–69 (2005).
[CrossRef]

Vuckovic, J.

Watanabe, Y.

White, T. P.

Won, R.

R. Won, “Slow light now and then,” Nat. Photonics 2(8), 454–455 (2008).
[CrossRef]

Wu, H.

J. Hou, D. Gao, H. Wu, and R. Hao, “Flat Band Slow Light in Symmetric Line Defect Photonic Crystals Waveguide,” IEEE Photon. Tech. Lett. 21, 1571-1573 (2009).
[CrossRef]

Xia, F. N.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 113903, 87 (2001).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 113903, 87 (2001).
[CrossRef] [PubMed]

Zabelin, V.

Appl. Phys. B (1)

L. Dai and C. Jiang, “Photonic crystal slow light waveguides with large delay-bandwidth product,” Appl. Phys. B 95(1), 105–111 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20(14), 1237–1239 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

Nat. (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. 438(7064), 65–69 (2005).
[CrossRef]

Nat. Photon. (2)

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2(8), 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2(8), 465–473 (2008).
[CrossRef]

Nat. Photonics (1)

R. Won, “Slow light now and then,” Nat. Photonics 2(8), 454–455 (2008).
[CrossRef]

Nature (1)

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

Opt. Eng. (1)

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[CrossRef]

Opt. Express (11)

C. Martijn de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17(20), 17338–17343 (2009).
[CrossRef] [PubMed]

D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler,” Opt. Express 15(9), 5264–5270 (2007).
[CrossRef] [PubMed]

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14(4), 1658–1672 (2006).
[CrossRef] [PubMed]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007).
[CrossRef] [PubMed]

E. Dulkeith, F. N. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006).
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15(13), 8323–8328 (2007).
[CrossRef] [PubMed]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
[CrossRef] [PubMed]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13(23), 9398–9408 (2005).
[CrossRef] [PubMed]

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 113903, 87 (2001).
[CrossRef] [PubMed]

Other (1)

J. Hou, D. Gao, H. Wu, and R. Hao, “Flat Band Slow Light in Symmetric Line Defect Photonic Crystals Waveguide,” IEEE Photon. Tech. Lett. 21, 1571-1573 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Schematic picture of the proposed PC waveguide geometry, b) An example of “U” type group index- normalized frequency curve obtained for δx = 0.27a

Fig. 2
Fig. 2

a) Band diagram along the waveguide propagation direction for various values of the δx tuning geometrical parameter, and Ey field distributions for different δx values at k-points: b) K = 0.36881(2π/a), c) K = 0.44059(2π/a), d) K = 0.495(2π/a).

Fig. 3
Fig. 3

Details about the δx = 0.5a waveguide: a) Dispersion curve, b) Group index variation.

Fig. 4
Fig. 4

Group index variation as a function of normalized frequency for various values of the δx tuning geometrical parameter.

Fig. 6
Fig. 6

GVD dispersion obtained for different values of the δx waveguide geometrical parameter.

Tables (1)

Tables Icon

Table 1 Overall of average group indices and NDBP values of our proposed structure obtained by tuning various the δx parameter under a 0.2 flat ratio.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

NDBP n ˜ g × Δ ω ω
μ = n g max n g min n ˜ g
D λ = 2 π c λ 2 β 2 = 2 π c λ 2 2 k ω 2

Metrics