Abstract

We introduce the generation of dense trains of light-bullets in nonlocal nonlinear dielectrics. We exploit stable spatio-temporal self-trapped optical packets stemming from the interplay between local electronic and nonlocal reorientational nonlinearities, considering a seeded temporal modulation instability by specifically referring to nematic liquid crystals.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic Press, New York, 1982).
  2. H. C. Morris, P. G. Drazin, and R. S. Johnson, Solitons: an introduction (Cambridge University Press, New York, 1989).
  3. Y. S. Kivshar, and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, New York, 2003).
  4. A. C. Newell, Solitons in Mathematics and Physics (SIAM, Philadelphia, 1985).
  5. 5H. S. Eisenberg, R. Morandotti, Y. Silberberg, S. Bar-Ad, D. Ross, and J. S. Aitchison, “Kerr spatiotemporal self-focusing in a planar glass waveguide,” Phys. Rev. Lett. 87(4), 043902 (2001).
    [CrossRef] [PubMed]
  6. J. E. Bjorkholm and A. Ashkin, “CW self-focusing and self-trapping of light in Sodium vapor,” Phys. Rev. Lett. 32(4), 129–132 (1974).
    [CrossRef]
  7. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68(7), 923–935 (1992).
    [CrossRef] [PubMed]
  8. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
    [CrossRef] [PubMed]
  9. A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92(25), 253903 (2004).
    [CrossRef] [PubMed]
  10. A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, J. Solis, and C. N. Afonso, “Near-infrared spatial solitons in heavy metal oxide glasses,” Opt. Lett. 32(15), 2103–2105 (2007).
    [CrossRef] [PubMed]
  11. E. D’Asaro, S. Heidari-Bateni, A. Pasquazi, G. Assanto, J. Gonzalo, J. Solis, and C. N. Afonso, “Interaction of self-trapped beams in high index glass,” Opt. Express 17(19), 17150–17155 (2009).
    [CrossRef] [PubMed]
  12. A. W. Snyder and D. J. Mitchell, “Accessible Solitons,” Science 276(5318), 1538–1541 (1997).
    [CrossRef]
  13. Y. R. Shen, “Solitons made simple,” Science 276(5318), 1520–1521 (1997).
    [CrossRef]
  14. C. Conti, M. Peccianti, and G. Assanto, “Route to nonlocality and observation of accessible solitons,” Phys. Rev. Lett. 91(7), 073901 (2003).
    [CrossRef] [PubMed]
  15. M. Peccianti and G. Assanto, “Nematic liquid crystals: A suitable medium for self-confinement of coherent and incoherent light,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(3), R035603 (2002).
    [CrossRef]
  16. C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92(11), 113902 (2004).
    [CrossRef] [PubMed]
  17. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
    [CrossRef] [PubMed]
  18. Y. Silberberg, “Collapse of optical pulses,” Opt. Lett. 15(22), 1282–1284 (1990).
    [CrossRef] [PubMed]
  19. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B Quantum Semiclassical Opt. 7(5), R53–R72 (2005).
    [CrossRef]
  20. D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 025601 (2006).
    [CrossRef] [PubMed]
  21. I. B. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102(20), 203903 (2009).
    [CrossRef] [PubMed]
  22. H. C. Gurgov and O. Cohen, “Spatiotemporal pulse-train solitons,” Opt. Express 17(9), 7052–7058 (2009).
    [CrossRef] [PubMed]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  24. A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9(7), 288–290 (1984).
    [CrossRef] [PubMed]
  25. M. Peccianti, C. Conti, and G. Assanto, “Observation of optical modulational instability in a non-local medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, R025602 (2003).
    [CrossRef]
  26. G. Assanto, M. Peccianti, and C. Conti, “One dimensional transverse modulational instability in nonlocal media with a reorientational nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 10(5), 862–869 (2004).
    [CrossRef]
  27. S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW single mode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
    [CrossRef]
  28. J. Li, S. T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
    [CrossRef]

2009 (3)

2007 (1)

2006 (1)

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 025601 (2006).
[CrossRef] [PubMed]

2005 (2)

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B Quantum Semiclassical Opt. 7(5), R53–R72 (2005).
[CrossRef]

J. Li, S. T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

2004 (4)

G. Assanto, M. Peccianti, and C. Conti, “One dimensional transverse modulational instability in nonlocal media with a reorientational nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 10(5), 862–869 (2004).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92(11), 113902 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[CrossRef] [PubMed]

A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92(25), 253903 (2004).
[CrossRef] [PubMed]

2003 (2)

C. Conti, M. Peccianti, and G. Assanto, “Route to nonlocality and observation of accessible solitons,” Phys. Rev. Lett. 91(7), 073901 (2003).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, and G. Assanto, “Observation of optical modulational instability in a non-local medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, R025602 (2003).
[CrossRef]

2002 (1)

M. Peccianti and G. Assanto, “Nematic liquid crystals: A suitable medium for self-confinement of coherent and incoherent light,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(3), R035603 (2002).
[CrossRef]

2001 (1)

5H. S. Eisenberg, R. Morandotti, Y. Silberberg, S. Bar-Ad, D. Ross, and J. S. Aitchison, “Kerr spatiotemporal self-focusing in a planar glass waveguide,” Phys. Rev. Lett. 87(4), 043902 (2001).
[CrossRef] [PubMed]

1997 (2)

A. W. Snyder and D. J. Mitchell, “Accessible Solitons,” Science 276(5318), 1538–1541 (1997).
[CrossRef]

Y. R. Shen, “Solitons made simple,” Science 276(5318), 1520–1521 (1997).
[CrossRef]

1993 (1)

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

1992 (2)

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68(7), 923–935 (1992).
[CrossRef] [PubMed]

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW single mode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[CrossRef]

1990 (1)

1984 (1)

1974 (1)

J. E. Bjorkholm and A. Ashkin, “CW self-focusing and self-trapping of light in Sodium vapor,” Phys. Rev. Lett. 32(4), 129–132 (1974).
[CrossRef]

Afonso, C. N.

Aitchison, J. S.

5H. S. Eisenberg, R. Morandotti, Y. Silberberg, S. Bar-Ad, D. Ross, and J. S. Aitchison, “Kerr spatiotemporal self-focusing in a planar glass waveguide,” Phys. Rev. Lett. 87(4), 043902 (2001).
[CrossRef] [PubMed]

Ashkin, A.

J. E. Bjorkholm and A. Ashkin, “CW self-focusing and self-trapping of light in Sodium vapor,” Phys. Rev. Lett. 32(4), 129–132 (1974).
[CrossRef]

Assanto, G.

I. B. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102(20), 203903 (2009).
[CrossRef] [PubMed]

E. D’Asaro, S. Heidari-Bateni, A. Pasquazi, G. Assanto, J. Gonzalo, J. Solis, and C. N. Afonso, “Interaction of self-trapped beams in high index glass,” Opt. Express 17(19), 17150–17155 (2009).
[CrossRef] [PubMed]

A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, J. Solis, and C. N. Afonso, “Near-infrared spatial solitons in heavy metal oxide glasses,” Opt. Lett. 32(15), 2103–2105 (2007).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[CrossRef] [PubMed]

G. Assanto, M. Peccianti, and C. Conti, “One dimensional transverse modulational instability in nonlocal media with a reorientational nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 10(5), 862–869 (2004).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92(11), 113902 (2004).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, “Route to nonlocality and observation of accessible solitons,” Phys. Rev. Lett. 91(7), 073901 (2003).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, and G. Assanto, “Observation of optical modulational instability in a non-local medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, R025602 (2003).
[CrossRef]

M. Peccianti and G. Assanto, “Nematic liquid crystals: A suitable medium for self-confinement of coherent and incoherent light,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(3), R035603 (2002).
[CrossRef]

Bar-Ad, S.

5H. S. Eisenberg, R. Morandotti, Y. Silberberg, S. Bar-Ad, D. Ross, and J. S. Aitchison, “Kerr spatiotemporal self-focusing in a planar glass waveguide,” Phys. Rev. Lett. 87(4), 043902 (2001).
[CrossRef] [PubMed]

Bjorkholm, J. E.

J. E. Bjorkholm and A. Ashkin, “CW self-focusing and self-trapping of light in Sodium vapor,” Phys. Rev. Lett. 32(4), 129–132 (1974).
[CrossRef]

Brugioni, S.

J. Li, S. T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Burgess, I. B.

I. B. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102(20), 203903 (2009).
[CrossRef] [PubMed]

Chernikov, S. V.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW single mode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[CrossRef]

Cohen, O.

Conti, C.

G. Assanto, M. Peccianti, and C. Conti, “One dimensional transverse modulational instability in nonlocal media with a reorientational nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 10(5), 862–869 (2004).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92(11), 113902 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, “Route to nonlocality and observation of accessible solitons,” Phys. Rev. Lett. 91(7), 073901 (2003).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, and G. Assanto, “Observation of optical modulational instability in a non-local medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, R025602 (2003).
[CrossRef]

Crasovan, L.-C.

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 025601 (2006).
[CrossRef] [PubMed]

Crosignani, B.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68(7), 923–935 (1992).
[CrossRef] [PubMed]

D’Asaro, E.

De Luca, A.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[CrossRef] [PubMed]

Di Porto, P.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Di Trapani, P.

A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92(25), 253903 (2004).
[CrossRef] [PubMed]

Dianov, E. M.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW single mode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[CrossRef]

Dubietis, A.

A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92(25), 253903 (2004).
[CrossRef] [PubMed]

Duree, G. C.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Eisenberg, H. S.

5H. S. Eisenberg, R. Morandotti, Y. Silberberg, S. Bar-Ad, D. Ross, and J. S. Aitchison, “Kerr spatiotemporal self-focusing in a planar glass waveguide,” Phys. Rev. Lett. 87(4), 043902 (2001).
[CrossRef] [PubMed]

Faetti, S.

J. Li, S. T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Fischer, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68(7), 923–935 (1992).
[CrossRef] [PubMed]

Gaizauskas, E.

A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92(25), 253903 (2004).
[CrossRef] [PubMed]

Gonzalo, J.

Gurgov, H. C.

Hasegawa, A.

Heidari-Bateni, S.

Kartashov, Y.

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 025601 (2006).
[CrossRef] [PubMed]

Lederer, F.

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 025601 (2006).
[CrossRef] [PubMed]

Li, J.

J. Li, S. T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Malomed, B.

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 025601 (2006).
[CrossRef] [PubMed]

Malomed, B. A.

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B Quantum Semiclassical Opt. 7(5), R53–R72 (2005).
[CrossRef]

Mamyshev, P. V.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW single mode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[CrossRef]

Mazilu, D.

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 025601 (2006).
[CrossRef] [PubMed]

Meucci, R.

J. Li, S. T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Mihalache, D.

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 025601 (2006).
[CrossRef] [PubMed]

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B Quantum Semiclassical Opt. 7(5), R53–R72 (2005).
[CrossRef]

Mitchell, D. J.

A. W. Snyder and D. J. Mitchell, “Accessible Solitons,” Science 276(5318), 1538–1541 (1997).
[CrossRef]

Morandotti, R.

I. B. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102(20), 203903 (2009).
[CrossRef] [PubMed]

5H. S. Eisenberg, R. Morandotti, Y. Silberberg, S. Bar-Ad, D. Ross, and J. S. Aitchison, “Kerr spatiotemporal self-focusing in a planar glass waveguide,” Phys. Rev. Lett. 87(4), 043902 (2001).
[CrossRef] [PubMed]

Neurgaonkar, R.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Neurgaonkar, R. R.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Pasquazi, A.

Peccianti, M.

I. B. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102(20), 203903 (2009).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[CrossRef] [PubMed]

G. Assanto, M. Peccianti, and C. Conti, “One dimensional transverse modulational instability in nonlocal media with a reorientational nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 10(5), 862–869 (2004).
[CrossRef]

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92(11), 113902 (2004).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, “Route to nonlocality and observation of accessible solitons,” Phys. Rev. Lett. 91(7), 073901 (2003).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, and G. Assanto, “Observation of optical modulational instability in a non-local medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, R025602 (2003).
[CrossRef]

M. Peccianti and G. Assanto, “Nematic liquid crystals: A suitable medium for self-confinement of coherent and incoherent light,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(3), R035603 (2002).
[CrossRef]

Ross, D.

5H. S. Eisenberg, R. Morandotti, Y. Silberberg, S. Bar-Ad, D. Ross, and J. S. Aitchison, “Kerr spatiotemporal self-focusing in a planar glass waveguide,” Phys. Rev. Lett. 87(4), 043902 (2001).
[CrossRef] [PubMed]

Salamo, G. J.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Segev, M.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68(7), 923–935 (1992).
[CrossRef] [PubMed]

Sharp, E. J.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Shen, Y. R.

Y. R. Shen, “Solitons made simple,” Science 276(5318), 1520–1521 (1997).
[CrossRef]

Shultz, J. L.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Silberberg, Y.

5H. S. Eisenberg, R. Morandotti, Y. Silberberg, S. Bar-Ad, D. Ross, and J. S. Aitchison, “Kerr spatiotemporal self-focusing in a planar glass waveguide,” Phys. Rev. Lett. 87(4), 043902 (2001).
[CrossRef] [PubMed]

Y. Silberberg, “Collapse of optical pulses,” Opt. Lett. 15(22), 1282–1284 (1990).
[CrossRef] [PubMed]

Snyder, A. W.

A. W. Snyder and D. J. Mitchell, “Accessible Solitons,” Science 276(5318), 1538–1541 (1997).
[CrossRef]

Solis, J.

Stivala, S.

Tamosauskas, G.

A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92(25), 253903 (2004).
[CrossRef] [PubMed]

Taylor, J. R.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW single mode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[CrossRef]

Torner, L.

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 025601 (2006).
[CrossRef] [PubMed]

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B Quantum Semiclassical Opt. 7(5), R53–R72 (2005).
[CrossRef]

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[CrossRef] [PubMed]

Wise, F.

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B Quantum Semiclassical Opt. 7(5), R53–R72 (2005).
[CrossRef]

Wu, S. T.

J. Li, S. T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Yariv, A.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68(7), 923–935 (1992).
[CrossRef] [PubMed]

Electron. Lett. (1)

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW single mode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Assanto, M. Peccianti, and C. Conti, “One dimensional transverse modulational instability in nonlocal media with a reorientational nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 10(5), 862–869 (2004).
[CrossRef]

J. Appl. Phys. (1)

J. Li, S. T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt. (1)

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B Quantum Semiclassical Opt. 7(5), R53–R72 (2005).
[CrossRef]

Nature (1)

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

M. Peccianti and G. Assanto, “Nematic liquid crystals: A suitable medium for self-confinement of coherent and incoherent light,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(3), R035603 (2002).
[CrossRef]

M. Peccianti, C. Conti, and G. Assanto, “Observation of optical modulational instability in a non-local medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, R025602 (2003).
[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 025601 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (8)

I. B. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102(20), 203903 (2009).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92(11), 113902 (2004).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, “Route to nonlocality and observation of accessible solitons,” Phys. Rev. Lett. 91(7), 073901 (2003).
[CrossRef] [PubMed]

5H. S. Eisenberg, R. Morandotti, Y. Silberberg, S. Bar-Ad, D. Ross, and J. S. Aitchison, “Kerr spatiotemporal self-focusing in a planar glass waveguide,” Phys. Rev. Lett. 87(4), 043902 (2001).
[CrossRef] [PubMed]

J. E. Bjorkholm and A. Ashkin, “CW self-focusing and self-trapping of light in Sodium vapor,” Phys. Rev. Lett. 32(4), 129–132 (1974).
[CrossRef]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68(7), 923–935 (1992).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92(25), 253903 (2004).
[CrossRef] [PubMed]

Science (2)

A. W. Snyder and D. J. Mitchell, “Accessible Solitons,” Science 276(5318), 1538–1541 (1997).
[CrossRef]

Y. R. Shen, “Solitons made simple,” Science 276(5318), 1520–1521 (1997).
[CrossRef]

Other (5)

R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic Press, New York, 1982).

H. C. Morris, P. G. Drazin, and R. S. Johnson, Solitons: an introduction (Cambridge University Press, New York, 1989).

Y. S. Kivshar, and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, New York, 2003).

A. C. Newell, Solitons in Mathematics and Physics (SIAM, Philadelphia, 1985).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).

Supplementary Material (2)

» Media 1: MOV (1387 KB)     
» Media 2: MOV (1141 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of temporal MI. A narrowband pump excites a power-dependent spectral gain in the nonlinear medium. As the background noise gets amplified, sidebands appear in the output spectrum, corresponding to the formation of pulse trains.

Fig. 2
Fig. 2

(a) Sketch of the propagation geometry in the NLC cell. (b) Example of experimental observation of a nonlocal soliton (pseudo-color map) excited by a 4.5mW laser beam in a cell of thickness d = 100μm and with θ = 45°.

Fig. 3
Fig. 3

Calculated soliton waveguide and mode from Eq. (2) for the NLC mixture E7 in a cell of thickness d = 100μm, θ0 = π/6 and P = 2.35mW at λ = 850nm. (a) Transverse index distribution. (b) Transverse profile of the modal electric field.

Fig. 4
Fig. 4

Effective parameters of the nonlocal soliton waveguide versus average power: (a) nonlinearity γ, (b) area Aeff, (c) index neff and (d) GVD β2.

Fig. 5
Fig. 5

(a) Typical evolution of a 4.4ps flat-top pulse centered at λ = 850nm in the presence of a white noise of average power 2.3mW driven via an MI process seeded by a CW background. (b) Input profile with superimposed noise. (c) Temporal profile after a propagation of 33mm. (Media 1)

Fig. 6
Fig. 6

Typical MI realization for a 4.4ps-flat-top pulse at λ = 850nm seeded by CW white noise with a monochromatic component Pseed = Pnoise = 2.35mW centered at λseed = 843.3nm. (a) Waveform evolution in time versus Z; (b) input pulse profile; (c) temporal profile at Z = 26mm: the pulse train has a repetition rate of 2.8THz. (Media 2)

Fig. 7
Fig. 7

(a) Pulse-to-pulse correlation Ψ versus the spectral density of the noise average power; (b) and (c) show the superposition of 50 realizations for ESDnoise = −20 and 7dBm/THz2, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i A z β 2 2 2 A T 2 γ | A | 2 A = 0
2 i k F Z + X Y F + k 0 2 ( n ( θ ) n o ) F = 0 K X Y θ + ( n | | 2 n 2 ) sin ( 2 θ ) 4 | F | 2 | Σ n A ( z , t n σ ) | 2 t = 0
Η n ( t ) = A n ( t ) N A n ( t τ ) N d τ

Metrics