Abstract

We report on optical spectroscopy (photoluminescence and photoluminescence excitation) on two-dimensional self-organized layers of (C6H5C2H4-NH3)2-PbI4 perovskite. Temperature and excitation power dependance of the optical spectra gives a new insight into the excitonic and the phononic properties of this hybrid organic/inorganic semiconductor. In particular, exciton-phonon interaction is found to be more than one order of magnitude higher than in GaAs QWs. As a result, photoluminescence emission lines have to be interpreted in the framework of a polaron model.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Mitzi, K. Chondroulis, and C. R. Kagan, “Organic-inorganic electronics,” IBM J. Res. Develop. 45, 29–45 (2001).
    [CrossRef]
  2. G. C. Papavassiliou and I. B. Koutselas, “Structural, optical and related properties of some natural three and lower dimensional semiconductors systems,” Synth. Met. 71(1-3), 1713–1714 (1995).
    [CrossRef]
  3. R. Parashkov, A. Brehier, A. Georgiev, S. Bouchoule, X. Lafosse, J. S. Lauret, C. T. Nguyen, M. Leroux, and E. Deleporte, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” in Progress in Advanced Materials Research, N.H. Voler Nova Science, ed. (2007).
  4. S. Zhang, G. Lanty, J. S. Lauret, E. Deleporte, P. Aude-bert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
    [CrossRef]
  5. G. Lanty, A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
    [CrossRef]
  6. G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett. 93(8), 081101 (2008).
    [CrossRef]
  7. A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89(17), 171110 (2006).
    [CrossRef]
  8. J. Wenus, R. Parashkov, S. Ceccarelli, A. Brehier, J. S. Lauret, M. S. Skolnick, E. Deleporte, and D. G. Lidzey, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” Phys. Rev. B 74(23), 235212 (2006).
    [CrossRef]
  9. J. I. Fujisawa and T. Ishihara, “Charge-transfer transitions between wires and spacers in an inorganic-organic quasi-one dimensional crystal methylviologen lead iodide,” Phys. Rev. B 70(11), 113203 (2004).
    [CrossRef]
  10. J. I. Fujisawa and T. Ishihara, “Excitons and biexcitons bound to a positive ion in a bismuth-doped inorganic layered lead iodide semiconductor,” Phys. Rev. B 70(20), 205330 (2004).
    [CrossRef]
  11. M. Shimizu and J. I. Fujisawa, “Exciton-exciton interaction in an inorganic-organic layered semiconductor, (C6H5C2H4NH3)2PbI4,” J. Lumin. 108(1-4), 189–194 (2004).
    [CrossRef]
  12. T. Kondo, T. Azuma, T. Yuasa, and R. Ito, “Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4, ” Solid state comm. 105, 253–255 (1998).
  13. K. Tanaka, F. Sano, T. Takahashi, T. Kondo, R. Ito, and K. Ema, “Two dimensional Wannier excitons in a layered-perovskite-type crystal (C6H13NH3)2PbI4,” Solid sate comm. 122, 249–252 (2002).
  14. T. Hattori, T. Taira, M. Era, T. Tsutsui, and S. Saito, “Highly efficient electroluminescence from a heterostructure device combiend with emissive layered-perovskite and an electron-transporting organic compound,” Chem. Phys. Lett. 254(1-2), 103–108 (1996).
    [CrossRef]
  15. X. Hong, T. Ishihara, and A. V. Nurmiko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45(12), 6961–6964 (1992).
    [CrossRef]
  16. T. Ishihara, J. Takahashi, and T. Goto, “Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4,” Solid State Commun. 69(9), 933–936 (1989).
    [CrossRef]
  17. T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two dimensional semiconductors (CnH2n+1NH3)2PbI4,” Phys. Rev. B 42(17), 11099–11107 (1990).
    [CrossRef]
  18. T. Ishihara, X. Hong, J. Ding, and N. V. Nurmikko, “Dielectric confinement effect for exciton and biexciton states in PbI4-based two dimensional semiconductor structures,” Surf. Sci. 267(1-3), 323–326 (1992).
    [CrossRef]
  19. C. Q. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata, and R. Ito, “Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40T,” Solid State Commun. 79(3), 249–253 (1991).
    [CrossRef]
  20. X. Hong, T. Ishihara, and A. V. Nurmiko, “Photoconductivity and electroluminescence in lead iodide based natural quantum well structures,” Solid State Commun. 84(6), 657–661 (1992).
    [CrossRef]
  21. C. Q. Xu, S. Fukuta, H. Sakakura, T. Kondo, R. Ito, Y. Takahashi, and K. Kumata, “Anomalous electro-absorption in the low-temperature phase of (C10H21NH3)2PbI4,” Solid State Commun. 77(12), 923–926 (1991).
    [CrossRef]
  22. T. Kataoaka, T. Kondo, R. Ito, S. Sasaki, K. Uchida, and N. Miura, “Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4,” Phys. Rev. B 47(4), 2010–2018 (1993).
    [CrossRef]
  23. E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B 51(20), 14370–14378 (1995).
    [CrossRef]
  24. M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device unsing a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676–678 (1994).
    [CrossRef]
  25. T. Goto, H. Makino, T. Yao, C. H. Chia, T. Makino, Y. Segawa, G. A. Mousdis, and G. C. Papavassiliou, “Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4,” Phys. Rev. B 73(11), 115206 (2006).
    [CrossRef]
  26. M. Shimizu, J. I. Fujisawa, and T. Ishihara, “Photoluminescence of the inorganic-organic layered semiconductor (C6H5C2H4NH3)2PbI4: Observation of triexciton formation,” Phys. Rev. B 74(15), 155206 (2006).
    [CrossRef]
  27. K. Ema, M. Inomata, Y. Kato, H. Kunugita, and M. Era, “Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials,” Phys. Rev. Lett. 100(25), 257401 (2008).
    [CrossRef] [PubMed]
  28. T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57(19), 12428–12434 (1998).
    [CrossRef]
  29. A. Kavokin, and G. Malpuech, Cavity Polaritons (Elsevier, Amsterdam, 2003).
  30. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
    [CrossRef] [PubMed]
  31. S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
    [CrossRef] [PubMed]
  32. L. V. Keldysh, JETP Lett. 29, 658 (1979).
  33. M. Kumagai and T. Takagahara, “Excitonic and nonlinear optical properties of dielectric quantum-well structures,” Phys. Rev. B 40(18), 12359–12381 (1989).
    [CrossRef]
  34. J. Lee, E. S. Koteles, and M. O. Vassel, “Luminescence linewidths of excitons in GaAs quantum wells below 150K,” Phys. Rev. B 33(8), 5512–5516 (1986).
    [CrossRef]
  35. M. S. Skolnick and D. Bimberg, “Angular-dependent magnetoluminescence study of the layer compound 2H-PbI2,” Phys. Rev. B 18(12), 7080–7088 (1978).
    [CrossRef]
  36. V. G. Plekhanov, “Lead Halides: electronic properties and applications,” Prog. Mater. Sci. 49(6), 787–886 (2004).
    [CrossRef]
  37. T. Goto and S. Saito, “Optical properties of ultrathin PbI2 microcrystallite in polymer,” J. Lumin. 70(1-6), 435–447 (1996).
    [CrossRef]
  38. H. Kudo, K. Murakami, H. Ishibashi, R. Zheng, Y. Yamada, and T. Taguchi, “Temperature independent Stokes Shift in an In 0.08 Ga 0.92 N Epitaxial Layer Reavealed by Photoluminescence excitation spectroscopy,” Phys. Status Solidi 228(1), 55–58 (2001) (b).
    [CrossRef]
  39. I. Ch. Schluter and M. Schluter, “Electronic structure and optical properties of PbI2,” Phys. Rev. B 9(4), 1652–1663 (1974).
    [CrossRef]
  40. K. Ema, K. Umeda, M. Toda, C. Yajima, Y. Arai, H. Kunugita, D. Wolverson, and J. J. Davies, “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum wellmaterial,” Phys. Rev. B 73(24), 241310 (2006).
    [CrossRef]

2009

S. Zhang, G. Lanty, J. S. Lauret, E. Deleporte, P. Aude-bert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

2008

G. Lanty, A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett. 93(8), 081101 (2008).
[CrossRef]

K. Ema, M. Inomata, Y. Kato, H. Kunugita, and M. Era, “Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials,” Phys. Rev. Lett. 100(25), 257401 (2008).
[CrossRef] [PubMed]

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

2007

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

2006

T. Goto, H. Makino, T. Yao, C. H. Chia, T. Makino, Y. Segawa, G. A. Mousdis, and G. C. Papavassiliou, “Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4,” Phys. Rev. B 73(11), 115206 (2006).
[CrossRef]

M. Shimizu, J. I. Fujisawa, and T. Ishihara, “Photoluminescence of the inorganic-organic layered semiconductor (C6H5C2H4NH3)2PbI4: Observation of triexciton formation,” Phys. Rev. B 74(15), 155206 (2006).
[CrossRef]

K. Ema, K. Umeda, M. Toda, C. Yajima, Y. Arai, H. Kunugita, D. Wolverson, and J. J. Davies, “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum wellmaterial,” Phys. Rev. B 73(24), 241310 (2006).
[CrossRef]

A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89(17), 171110 (2006).
[CrossRef]

J. Wenus, R. Parashkov, S. Ceccarelli, A. Brehier, J. S. Lauret, M. S. Skolnick, E. Deleporte, and D. G. Lidzey, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” Phys. Rev. B 74(23), 235212 (2006).
[CrossRef]

2004

J. I. Fujisawa and T. Ishihara, “Charge-transfer transitions between wires and spacers in an inorganic-organic quasi-one dimensional crystal methylviologen lead iodide,” Phys. Rev. B 70(11), 113203 (2004).
[CrossRef]

J. I. Fujisawa and T. Ishihara, “Excitons and biexcitons bound to a positive ion in a bismuth-doped inorganic layered lead iodide semiconductor,” Phys. Rev. B 70(20), 205330 (2004).
[CrossRef]

M. Shimizu and J. I. Fujisawa, “Exciton-exciton interaction in an inorganic-organic layered semiconductor, (C6H5C2H4NH3)2PbI4,” J. Lumin. 108(1-4), 189–194 (2004).
[CrossRef]

V. G. Plekhanov, “Lead Halides: electronic properties and applications,” Prog. Mater. Sci. 49(6), 787–886 (2004).
[CrossRef]

2001

H. Kudo, K. Murakami, H. Ishibashi, R. Zheng, Y. Yamada, and T. Taguchi, “Temperature independent Stokes Shift in an In 0.08 Ga 0.92 N Epitaxial Layer Reavealed by Photoluminescence excitation spectroscopy,” Phys. Status Solidi 228(1), 55–58 (2001) (b).
[CrossRef]

D. B. Mitzi, K. Chondroulis, and C. R. Kagan, “Organic-inorganic electronics,” IBM J. Res. Develop. 45, 29–45 (2001).
[CrossRef]

1998

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57(19), 12428–12434 (1998).
[CrossRef]

1996

T. Goto and S. Saito, “Optical properties of ultrathin PbI2 microcrystallite in polymer,” J. Lumin. 70(1-6), 435–447 (1996).
[CrossRef]

T. Hattori, T. Taira, M. Era, T. Tsutsui, and S. Saito, “Highly efficient electroluminescence from a heterostructure device combiend with emissive layered-perovskite and an electron-transporting organic compound,” Chem. Phys. Lett. 254(1-2), 103–108 (1996).
[CrossRef]

1995

G. C. Papavassiliou and I. B. Koutselas, “Structural, optical and related properties of some natural three and lower dimensional semiconductors systems,” Synth. Met. 71(1-3), 1713–1714 (1995).
[CrossRef]

E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B 51(20), 14370–14378 (1995).
[CrossRef]

1994

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device unsing a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676–678 (1994).
[CrossRef]

1993

T. Kataoaka, T. Kondo, R. Ito, S. Sasaki, K. Uchida, and N. Miura, “Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4,” Phys. Rev. B 47(4), 2010–2018 (1993).
[CrossRef]

1992

X. Hong, T. Ishihara, and A. V. Nurmiko, “Photoconductivity and electroluminescence in lead iodide based natural quantum well structures,” Solid State Commun. 84(6), 657–661 (1992).
[CrossRef]

T. Ishihara, X. Hong, J. Ding, and N. V. Nurmikko, “Dielectric confinement effect for exciton and biexciton states in PbI4-based two dimensional semiconductor structures,” Surf. Sci. 267(1-3), 323–326 (1992).
[CrossRef]

X. Hong, T. Ishihara, and A. V. Nurmiko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45(12), 6961–6964 (1992).
[CrossRef]

1991

C. Q. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata, and R. Ito, “Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40T,” Solid State Commun. 79(3), 249–253 (1991).
[CrossRef]

C. Q. Xu, S. Fukuta, H. Sakakura, T. Kondo, R. Ito, Y. Takahashi, and K. Kumata, “Anomalous electro-absorption in the low-temperature phase of (C10H21NH3)2PbI4,” Solid State Commun. 77(12), 923–926 (1991).
[CrossRef]

1990

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two dimensional semiconductors (CnH2n+1NH3)2PbI4,” Phys. Rev. B 42(17), 11099–11107 (1990).
[CrossRef]

1989

T. Ishihara, J. Takahashi, and T. Goto, “Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4,” Solid State Commun. 69(9), 933–936 (1989).
[CrossRef]

M. Kumagai and T. Takagahara, “Excitonic and nonlinear optical properties of dielectric quantum-well structures,” Phys. Rev. B 40(18), 12359–12381 (1989).
[CrossRef]

1986

J. Lee, E. S. Koteles, and M. O. Vassel, “Luminescence linewidths of excitons in GaAs quantum wells below 150K,” Phys. Rev. B 33(8), 5512–5516 (1986).
[CrossRef]

1979

L. V. Keldysh, JETP Lett. 29, 658 (1979).

1978

M. S. Skolnick and D. Bimberg, “Angular-dependent magnetoluminescence study of the layer compound 2H-PbI2,” Phys. Rev. B 18(12), 7080–7088 (1978).
[CrossRef]

1974

I. Ch. Schluter and M. Schluter, “Electronic structure and optical properties of PbI2,” Phys. Rev. B 9(4), 1652–1663 (1974).
[CrossRef]

Arai, Y.

K. Ema, K. Umeda, M. Toda, C. Yajima, Y. Arai, H. Kunugita, D. Wolverson, and J. J. Davies, “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum wellmaterial,” Phys. Rev. B 73(24), 241310 (2006).
[CrossRef]

Aude-bert, P.

S. Zhang, G. Lanty, J. S. Lauret, E. Deleporte, P. Aude-bert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

Bajoni, D.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

Baumberg, J. J.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Bimberg, D.

M. S. Skolnick and D. Bimberg, “Angular-dependent magnetoluminescence study of the layer compound 2H-PbI2,” Phys. Rev. B 18(12), 7080–7088 (1978).
[CrossRef]

Bloch, J.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

Bouchoule, S.

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett. 93(8), 081101 (2008).
[CrossRef]

Brehier, A.

G. Lanty, A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89(17), 171110 (2006).
[CrossRef]

J. Wenus, R. Parashkov, S. Ceccarelli, A. Brehier, J. S. Lauret, M. S. Skolnick, E. Deleporte, and D. G. Lidzey, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” Phys. Rev. B 74(23), 235212 (2006).
[CrossRef]

Butté, R.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Carlin, J. F.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Ceccarelli, S.

J. Wenus, R. Parashkov, S. Ceccarelli, A. Brehier, J. S. Lauret, M. S. Skolnick, E. Deleporte, and D. G. Lidzey, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” Phys. Rev. B 74(23), 235212 (2006).
[CrossRef]

Chia, C. H.

T. Goto, H. Makino, T. Yao, C. H. Chia, T. Makino, Y. Segawa, G. A. Mousdis, and G. C. Papavassiliou, “Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4,” Phys. Rev. B 73(11), 115206 (2006).
[CrossRef]

Chondroulis, K.

D. B. Mitzi, K. Chondroulis, and C. R. Kagan, “Organic-inorganic electronics,” IBM J. Res. Develop. 45, 29–45 (2001).
[CrossRef]

Christmann, G.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Christopoulos, S.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Davies, J. J.

K. Ema, K. Umeda, M. Toda, C. Yajima, Y. Arai, H. Kunugita, D. Wolverson, and J. J. Davies, “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum wellmaterial,” Phys. Rev. B 73(24), 241310 (2006).
[CrossRef]

Deleporte, E.

S. Zhang, G. Lanty, J. S. Lauret, E. Deleporte, P. Aude-bert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

G. Lanty, A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett. 93(8), 081101 (2008).
[CrossRef]

J. Wenus, R. Parashkov, S. Ceccarelli, A. Brehier, J. S. Lauret, M. S. Skolnick, E. Deleporte, and D. G. Lidzey, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” Phys. Rev. B 74(23), 235212 (2006).
[CrossRef]

A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89(17), 171110 (2006).
[CrossRef]

Ding, J.

T. Ishihara, X. Hong, J. Ding, and N. V. Nurmikko, “Dielectric confinement effect for exciton and biexciton states in PbI4-based two dimensional semiconductor structures,” Surf. Sci. 267(1-3), 323–326 (1992).
[CrossRef]

Ema, K.

K. Ema, M. Inomata, Y. Kato, H. Kunugita, and M. Era, “Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials,” Phys. Rev. Lett. 100(25), 257401 (2008).
[CrossRef] [PubMed]

K. Ema, K. Umeda, M. Toda, C. Yajima, Y. Arai, H. Kunugita, D. Wolverson, and J. J. Davies, “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum wellmaterial,” Phys. Rev. B 73(24), 241310 (2006).
[CrossRef]

Era, M.

K. Ema, M. Inomata, Y. Kato, H. Kunugita, and M. Era, “Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials,” Phys. Rev. Lett. 100(25), 257401 (2008).
[CrossRef] [PubMed]

T. Hattori, T. Taira, M. Era, T. Tsutsui, and S. Saito, “Highly efficient electroluminescence from a heterostructure device combiend with emissive layered-perovskite and an electron-transporting organic compound,” Chem. Phys. Lett. 254(1-2), 103–108 (1996).
[CrossRef]

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device unsing a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676–678 (1994).
[CrossRef]

Feltin, E.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Fujisawa, J. I.

M. Shimizu, J. I. Fujisawa, and T. Ishihara, “Photoluminescence of the inorganic-organic layered semiconductor (C6H5C2H4NH3)2PbI4: Observation of triexciton formation,” Phys. Rev. B 74(15), 155206 (2006).
[CrossRef]

M. Shimizu and J. I. Fujisawa, “Exciton-exciton interaction in an inorganic-organic layered semiconductor, (C6H5C2H4NH3)2PbI4,” J. Lumin. 108(1-4), 189–194 (2004).
[CrossRef]

J. I. Fujisawa and T. Ishihara, “Charge-transfer transitions between wires and spacers in an inorganic-organic quasi-one dimensional crystal methylviologen lead iodide,” Phys. Rev. B 70(11), 113203 (2004).
[CrossRef]

J. I. Fujisawa and T. Ishihara, “Excitons and biexcitons bound to a positive ion in a bismuth-doped inorganic layered lead iodide semiconductor,” Phys. Rev. B 70(20), 205330 (2004).
[CrossRef]

Fujita, T.

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57(19), 12428–12434 (1998).
[CrossRef]

Fukuta, S.

C. Q. Xu, S. Fukuta, H. Sakakura, T. Kondo, R. Ito, Y. Takahashi, and K. Kumata, “Anomalous electro-absorption in the low-temperature phase of (C10H21NH3)2PbI4,” Solid State Commun. 77(12), 923–926 (1991).
[CrossRef]

Galmiche, L.

S. Zhang, G. Lanty, J. S. Lauret, E. Deleporte, P. Aude-bert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

Gippius, N. A.

E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B 51(20), 14370–14378 (1995).
[CrossRef]

Goto, T.

T. Goto, H. Makino, T. Yao, C. H. Chia, T. Makino, Y. Segawa, G. A. Mousdis, and G. C. Papavassiliou, “Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4,” Phys. Rev. B 73(11), 115206 (2006).
[CrossRef]

T. Goto and S. Saito, “Optical properties of ultrathin PbI2 microcrystallite in polymer,” J. Lumin. 70(1-6), 435–447 (1996).
[CrossRef]

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two dimensional semiconductors (CnH2n+1NH3)2PbI4,” Phys. Rev. B 42(17), 11099–11107 (1990).
[CrossRef]

T. Ishihara, J. Takahashi, and T. Goto, “Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4,” Solid State Commun. 69(9), 933–936 (1989).
[CrossRef]

Grandjean, N.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Grundy, A. J.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Hattori, T.

T. Hattori, T. Taira, M. Era, T. Tsutsui, and S. Saito, “Highly efficient electroluminescence from a heterostructure device combiend with emissive layered-perovskite and an electron-transporting organic compound,” Chem. Phys. Lett. 254(1-2), 103–108 (1996).
[CrossRef]

Hong, X.

X. Hong, T. Ishihara, and A. V. Nurmiko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45(12), 6961–6964 (1992).
[CrossRef]

X. Hong, T. Ishihara, and A. V. Nurmiko, “Photoconductivity and electroluminescence in lead iodide based natural quantum well structures,” Solid State Commun. 84(6), 657–661 (1992).
[CrossRef]

T. Ishihara, X. Hong, J. Ding, and N. V. Nurmikko, “Dielectric confinement effect for exciton and biexciton states in PbI4-based two dimensional semiconductor structures,” Surf. Sci. 267(1-3), 323–326 (1992).
[CrossRef]

Inomata, M.

K. Ema, M. Inomata, Y. Kato, H. Kunugita, and M. Era, “Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials,” Phys. Rev. Lett. 100(25), 257401 (2008).
[CrossRef] [PubMed]

Ishibashi, H.

H. Kudo, K. Murakami, H. Ishibashi, R. Zheng, Y. Yamada, and T. Taguchi, “Temperature independent Stokes Shift in an In 0.08 Ga 0.92 N Epitaxial Layer Reavealed by Photoluminescence excitation spectroscopy,” Phys. Status Solidi 228(1), 55–58 (2001) (b).
[CrossRef]

Ishihara, T.

M. Shimizu, J. I. Fujisawa, and T. Ishihara, “Photoluminescence of the inorganic-organic layered semiconductor (C6H5C2H4NH3)2PbI4: Observation of triexciton formation,” Phys. Rev. B 74(15), 155206 (2006).
[CrossRef]

J. I. Fujisawa and T. Ishihara, “Excitons and biexcitons bound to a positive ion in a bismuth-doped inorganic layered lead iodide semiconductor,” Phys. Rev. B 70(20), 205330 (2004).
[CrossRef]

J. I. Fujisawa and T. Ishihara, “Charge-transfer transitions between wires and spacers in an inorganic-organic quasi-one dimensional crystal methylviologen lead iodide,” Phys. Rev. B 70(11), 113203 (2004).
[CrossRef]

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57(19), 12428–12434 (1998).
[CrossRef]

E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B 51(20), 14370–14378 (1995).
[CrossRef]

X. Hong, T. Ishihara, and A. V. Nurmiko, “Photoconductivity and electroluminescence in lead iodide based natural quantum well structures,” Solid State Commun. 84(6), 657–661 (1992).
[CrossRef]

X. Hong, T. Ishihara, and A. V. Nurmiko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45(12), 6961–6964 (1992).
[CrossRef]

T. Ishihara, X. Hong, J. Ding, and N. V. Nurmikko, “Dielectric confinement effect for exciton and biexciton states in PbI4-based two dimensional semiconductor structures,” Surf. Sci. 267(1-3), 323–326 (1992).
[CrossRef]

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two dimensional semiconductors (CnH2n+1NH3)2PbI4,” Phys. Rev. B 42(17), 11099–11107 (1990).
[CrossRef]

T. Ishihara, J. Takahashi, and T. Goto, “Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4,” Solid State Commun. 69(9), 933–936 (1989).
[CrossRef]

Ito, R.

T. Kataoaka, T. Kondo, R. Ito, S. Sasaki, K. Uchida, and N. Miura, “Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4,” Phys. Rev. B 47(4), 2010–2018 (1993).
[CrossRef]

C. Q. Xu, S. Fukuta, H. Sakakura, T. Kondo, R. Ito, Y. Takahashi, and K. Kumata, “Anomalous electro-absorption in the low-temperature phase of (C10H21NH3)2PbI4,” Solid State Commun. 77(12), 923–926 (1991).
[CrossRef]

C. Q. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata, and R. Ito, “Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40T,” Solid State Commun. 79(3), 249–253 (1991).
[CrossRef]

Kagan, C. R.

D. B. Mitzi, K. Chondroulis, and C. R. Kagan, “Organic-inorganic electronics,” IBM J. Res. Develop. 45, 29–45 (2001).
[CrossRef]

Kataoaka, T.

T. Kataoaka, T. Kondo, R. Ito, S. Sasaki, K. Uchida, and N. Miura, “Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4,” Phys. Rev. B 47(4), 2010–2018 (1993).
[CrossRef]

Kato, Y.

K. Ema, M. Inomata, Y. Kato, H. Kunugita, and M. Era, “Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials,” Phys. Rev. Lett. 100(25), 257401 (2008).
[CrossRef] [PubMed]

Kavokin, A. V.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Keldysh, L. V.

L. V. Keldysh, JETP Lett. 29, 658 (1979).

Kondo, T.

T. Kataoaka, T. Kondo, R. Ito, S. Sasaki, K. Uchida, and N. Miura, “Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4,” Phys. Rev. B 47(4), 2010–2018 (1993).
[CrossRef]

C. Q. Xu, S. Fukuta, H. Sakakura, T. Kondo, R. Ito, Y. Takahashi, and K. Kumata, “Anomalous electro-absorption in the low-temperature phase of (C10H21NH3)2PbI4,” Solid State Commun. 77(12), 923–926 (1991).
[CrossRef]

C. Q. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata, and R. Ito, “Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40T,” Solid State Commun. 79(3), 249–253 (1991).
[CrossRef]

Koteles, E. S.

J. Lee, E. S. Koteles, and M. O. Vassel, “Luminescence linewidths of excitons in GaAs quantum wells below 150K,” Phys. Rev. B 33(8), 5512–5516 (1986).
[CrossRef]

Koutselas, I. B.

G. C. Papavassiliou and I. B. Koutselas, “Structural, optical and related properties of some natural three and lower dimensional semiconductors systems,” Synth. Met. 71(1-3), 1713–1714 (1995).
[CrossRef]

Kudo, H.

H. Kudo, K. Murakami, H. Ishibashi, R. Zheng, Y. Yamada, and T. Taguchi, “Temperature independent Stokes Shift in an In 0.08 Ga 0.92 N Epitaxial Layer Reavealed by Photoluminescence excitation spectroscopy,” Phys. Status Solidi 228(1), 55–58 (2001) (b).
[CrossRef]

Kuitani, T.

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57(19), 12428–12434 (1998).
[CrossRef]

Kumagai, M.

M. Kumagai and T. Takagahara, “Excitonic and nonlinear optical properties of dielectric quantum-well structures,” Phys. Rev. B 40(18), 12359–12381 (1989).
[CrossRef]

Kumata, K.

C. Q. Xu, S. Fukuta, H. Sakakura, T. Kondo, R. Ito, Y. Takahashi, and K. Kumata, “Anomalous electro-absorption in the low-temperature phase of (C10H21NH3)2PbI4,” Solid State Commun. 77(12), 923–926 (1991).
[CrossRef]

C. Q. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata, and R. Ito, “Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40T,” Solid State Commun. 79(3), 249–253 (1991).
[CrossRef]

Kunugita, H.

K. Ema, M. Inomata, Y. Kato, H. Kunugita, and M. Era, “Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials,” Phys. Rev. Lett. 100(25), 257401 (2008).
[CrossRef] [PubMed]

K. Ema, K. Umeda, M. Toda, C. Yajima, Y. Arai, H. Kunugita, D. Wolverson, and J. J. Davies, “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum wellmaterial,” Phys. Rev. B 73(24), 241310 (2006).
[CrossRef]

Lafosse, X.

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett. 93(8), 081101 (2008).
[CrossRef]

Lagoudakis, P. G.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Lanty, G.

S. Zhang, G. Lanty, J. S. Lauret, E. Deleporte, P. Aude-bert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

G. Lanty, A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett. 93(8), 081101 (2008).
[CrossRef]

Lauret, J. S.

S. Zhang, G. Lanty, J. S. Lauret, E. Deleporte, P. Aude-bert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett. 93(8), 081101 (2008).
[CrossRef]

G. Lanty, A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89(17), 171110 (2006).
[CrossRef]

J. Wenus, R. Parashkov, S. Ceccarelli, A. Brehier, J. S. Lauret, M. S. Skolnick, E. Deleporte, and D. G. Lidzey, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” Phys. Rev. B 74(23), 235212 (2006).
[CrossRef]

Lee, J.

J. Lee, E. S. Koteles, and M. O. Vassel, “Luminescence linewidths of excitons in GaAs quantum wells below 150K,” Phys. Rev. B 33(8), 5512–5516 (1986).
[CrossRef]

Lemaître, A.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

Lidzey, D. G.

J. Wenus, R. Parashkov, S. Ceccarelli, A. Brehier, J. S. Lauret, M. S. Skolnick, E. Deleporte, and D. G. Lidzey, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” Phys. Rev. B 74(23), 235212 (2006).
[CrossRef]

Makino, H.

T. Goto, H. Makino, T. Yao, C. H. Chia, T. Makino, Y. Segawa, G. A. Mousdis, and G. C. Papavassiliou, “Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4,” Phys. Rev. B 73(11), 115206 (2006).
[CrossRef]

Makino, T.

T. Goto, H. Makino, T. Yao, C. H. Chia, T. Makino, Y. Segawa, G. A. Mousdis, and G. C. Papavassiliou, “Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4,” Phys. Rev. B 73(11), 115206 (2006).
[CrossRef]

Miard, A.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

Mitzi, D. B.

D. B. Mitzi, K. Chondroulis, and C. R. Kagan, “Organic-inorganic electronics,” IBM J. Res. Develop. 45, 29–45 (2001).
[CrossRef]

Miura, N.

T. Kataoaka, T. Kondo, R. Ito, S. Sasaki, K. Uchida, and N. Miura, “Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4,” Phys. Rev. B 47(4), 2010–2018 (1993).
[CrossRef]

C. Q. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata, and R. Ito, “Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40T,” Solid State Commun. 79(3), 249–253 (1991).
[CrossRef]

Morimoto, S.

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device unsing a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676–678 (1994).
[CrossRef]

Mousdis, G. A.

T. Goto, H. Makino, T. Yao, C. H. Chia, T. Makino, Y. Segawa, G. A. Mousdis, and G. C. Papavassiliou, “Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4,” Phys. Rev. B 73(11), 115206 (2006).
[CrossRef]

Muljarov, E. A.

E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B 51(20), 14370–14378 (1995).
[CrossRef]

Murakami, K.

H. Kudo, K. Murakami, H. Ishibashi, R. Zheng, Y. Yamada, and T. Taguchi, “Temperature independent Stokes Shift in an In 0.08 Ga 0.92 N Epitaxial Layer Reavealed by Photoluminescence excitation spectroscopy,” Phys. Status Solidi 228(1), 55–58 (2001) (b).
[CrossRef]

Nurmikko, N. V.

T. Ishihara, X. Hong, J. Ding, and N. V. Nurmikko, “Dielectric confinement effect for exciton and biexciton states in PbI4-based two dimensional semiconductor structures,” Surf. Sci. 267(1-3), 323–326 (1992).
[CrossRef]

Nurmiko, A. V.

X. Hong, T. Ishihara, and A. V. Nurmiko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45(12), 6961–6964 (1992).
[CrossRef]

X. Hong, T. Ishihara, and A. V. Nurmiko, “Photoconductivity and electroluminescence in lead iodide based natural quantum well structures,” Solid State Commun. 84(6), 657–661 (1992).
[CrossRef]

Papavassiliou, G. C.

T. Goto, H. Makino, T. Yao, C. H. Chia, T. Makino, Y. Segawa, G. A. Mousdis, and G. C. Papavassiliou, “Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4,” Phys. Rev. B 73(11), 115206 (2006).
[CrossRef]

G. C. Papavassiliou and I. B. Koutselas, “Structural, optical and related properties of some natural three and lower dimensional semiconductors systems,” Synth. Met. 71(1-3), 1713–1714 (1995).
[CrossRef]

Parashkov, R.

G. Lanty, A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

J. Wenus, R. Parashkov, S. Ceccarelli, A. Brehier, J. S. Lauret, M. S. Skolnick, E. Deleporte, and D. G. Lidzey, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” Phys. Rev. B 74(23), 235212 (2006).
[CrossRef]

A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89(17), 171110 (2006).
[CrossRef]

Plekhanov, V. G.

V. G. Plekhanov, “Lead Halides: electronic properties and applications,” Prog. Mater. Sci. 49(6), 787–886 (2004).
[CrossRef]

Sagnes, I.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

Saito, S.

T. Goto and S. Saito, “Optical properties of ultrathin PbI2 microcrystallite in polymer,” J. Lumin. 70(1-6), 435–447 (1996).
[CrossRef]

T. Hattori, T. Taira, M. Era, T. Tsutsui, and S. Saito, “Highly efficient electroluminescence from a heterostructure device combiend with emissive layered-perovskite and an electron-transporting organic compound,” Chem. Phys. Lett. 254(1-2), 103–108 (1996).
[CrossRef]

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device unsing a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676–678 (1994).
[CrossRef]

Sakakura, H.

C. Q. Xu, S. Fukuta, H. Sakakura, T. Kondo, R. Ito, Y. Takahashi, and K. Kumata, “Anomalous electro-absorption in the low-temperature phase of (C10H21NH3)2PbI4,” Solid State Commun. 77(12), 923–926 (1991).
[CrossRef]

C. Q. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata, and R. Ito, “Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40T,” Solid State Commun. 79(3), 249–253 (1991).
[CrossRef]

Sasaki, S.

T. Kataoaka, T. Kondo, R. Ito, S. Sasaki, K. Uchida, and N. Miura, “Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4,” Phys. Rev. B 47(4), 2010–2018 (1993).
[CrossRef]

Sato, Y.

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57(19), 12428–12434 (1998).
[CrossRef]

Schluter, I. Ch.

I. Ch. Schluter and M. Schluter, “Electronic structure and optical properties of PbI2,” Phys. Rev. B 9(4), 1652–1663 (1974).
[CrossRef]

Schluter, M.

I. Ch. Schluter and M. Schluter, “Electronic structure and optical properties of PbI2,” Phys. Rev. B 9(4), 1652–1663 (1974).
[CrossRef]

Segawa, Y.

T. Goto, H. Makino, T. Yao, C. H. Chia, T. Makino, Y. Segawa, G. A. Mousdis, and G. C. Papavassiliou, “Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4,” Phys. Rev. B 73(11), 115206 (2006).
[CrossRef]

Senellart, P.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

Shimizu, M.

M. Shimizu, J. I. Fujisawa, and T. Ishihara, “Photoluminescence of the inorganic-organic layered semiconductor (C6H5C2H4NH3)2PbI4: Observation of triexciton formation,” Phys. Rev. B 74(15), 155206 (2006).
[CrossRef]

M. Shimizu and J. I. Fujisawa, “Exciton-exciton interaction in an inorganic-organic layered semiconductor, (C6H5C2H4NH3)2PbI4,” J. Lumin. 108(1-4), 189–194 (2004).
[CrossRef]

Skolnick, M. S.

J. Wenus, R. Parashkov, S. Ceccarelli, A. Brehier, J. S. Lauret, M. S. Skolnick, E. Deleporte, and D. G. Lidzey, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” Phys. Rev. B 74(23), 235212 (2006).
[CrossRef]

M. S. Skolnick and D. Bimberg, “Angular-dependent magnetoluminescence study of the layer compound 2H-PbI2,” Phys. Rev. B 18(12), 7080–7088 (1978).
[CrossRef]

Taguchi, T.

H. Kudo, K. Murakami, H. Ishibashi, R. Zheng, Y. Yamada, and T. Taguchi, “Temperature independent Stokes Shift in an In 0.08 Ga 0.92 N Epitaxial Layer Reavealed by Photoluminescence excitation spectroscopy,” Phys. Status Solidi 228(1), 55–58 (2001) (b).
[CrossRef]

Taira, T.

T. Hattori, T. Taira, M. Era, T. Tsutsui, and S. Saito, “Highly efficient electroluminescence from a heterostructure device combiend with emissive layered-perovskite and an electron-transporting organic compound,” Chem. Phys. Lett. 254(1-2), 103–108 (1996).
[CrossRef]

Takagahara, T.

M. Kumagai and T. Takagahara, “Excitonic and nonlinear optical properties of dielectric quantum-well structures,” Phys. Rev. B 40(18), 12359–12381 (1989).
[CrossRef]

Takahashi, J.

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two dimensional semiconductors (CnH2n+1NH3)2PbI4,” Phys. Rev. B 42(17), 11099–11107 (1990).
[CrossRef]

T. Ishihara, J. Takahashi, and T. Goto, “Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4,” Solid State Commun. 69(9), 933–936 (1989).
[CrossRef]

Takahashi, Y.

C. Q. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata, and R. Ito, “Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40T,” Solid State Commun. 79(3), 249–253 (1991).
[CrossRef]

C. Q. Xu, S. Fukuta, H. Sakakura, T. Kondo, R. Ito, Y. Takahashi, and K. Kumata, “Anomalous electro-absorption in the low-temperature phase of (C10H21NH3)2PbI4,” Solid State Commun. 77(12), 923–926 (1991).
[CrossRef]

Takeyama, S.

C. Q. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata, and R. Ito, “Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40T,” Solid State Commun. 79(3), 249–253 (1991).
[CrossRef]

Tikhodeev, S. G.

E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B 51(20), 14370–14378 (1995).
[CrossRef]

Toda, M.

K. Ema, K. Umeda, M. Toda, C. Yajima, Y. Arai, H. Kunugita, D. Wolverson, and J. J. Davies, “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum wellmaterial,” Phys. Rev. B 73(24), 241310 (2006).
[CrossRef]

Tsutsui, T.

T. Hattori, T. Taira, M. Era, T. Tsutsui, and S. Saito, “Highly efficient electroluminescence from a heterostructure device combiend with emissive layered-perovskite and an electron-transporting organic compound,” Chem. Phys. Lett. 254(1-2), 103–108 (1996).
[CrossRef]

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device unsing a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676–678 (1994).
[CrossRef]

Uchida, K.

T. Kataoaka, T. Kondo, R. Ito, S. Sasaki, K. Uchida, and N. Miura, “Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4,” Phys. Rev. B 47(4), 2010–2018 (1993).
[CrossRef]

Umeda, K.

K. Ema, K. Umeda, M. Toda, C. Yajima, Y. Arai, H. Kunugita, D. Wolverson, and J. J. Davies, “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum wellmaterial,” Phys. Rev. B 73(24), 241310 (2006).
[CrossRef]

Vassel, M. O.

J. Lee, E. S. Koteles, and M. O. Vassel, “Luminescence linewidths of excitons in GaAs quantum wells below 150K,” Phys. Rev. B 33(8), 5512–5516 (1986).
[CrossRef]

von Högersthal, G. B.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Wenus, J.

J. Wenus, R. Parashkov, S. Ceccarelli, A. Brehier, J. S. Lauret, M. S. Skolnick, E. Deleporte, and D. G. Lidzey, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” Phys. Rev. B 74(23), 235212 (2006).
[CrossRef]

Wertz, E.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

Wolverson, D.

K. Ema, K. Umeda, M. Toda, C. Yajima, Y. Arai, H. Kunugita, D. Wolverson, and J. J. Davies, “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum wellmaterial,” Phys. Rev. B 73(24), 241310 (2006).
[CrossRef]

Xu, C. Q.

C. Q. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata, and R. Ito, “Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40T,” Solid State Commun. 79(3), 249–253 (1991).
[CrossRef]

C. Q. Xu, S. Fukuta, H. Sakakura, T. Kondo, R. Ito, Y. Takahashi, and K. Kumata, “Anomalous electro-absorption in the low-temperature phase of (C10H21NH3)2PbI4,” Solid State Commun. 77(12), 923–926 (1991).
[CrossRef]

Yajima, C.

K. Ema, K. Umeda, M. Toda, C. Yajima, Y. Arai, H. Kunugita, D. Wolverson, and J. J. Davies, “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum wellmaterial,” Phys. Rev. B 73(24), 241310 (2006).
[CrossRef]

Yamada, Y.

H. Kudo, K. Murakami, H. Ishibashi, R. Zheng, Y. Yamada, and T. Taguchi, “Temperature independent Stokes Shift in an In 0.08 Ga 0.92 N Epitaxial Layer Reavealed by Photoluminescence excitation spectroscopy,” Phys. Status Solidi 228(1), 55–58 (2001) (b).
[CrossRef]

Yao, T.

T. Goto, H. Makino, T. Yao, C. H. Chia, T. Makino, Y. Segawa, G. A. Mousdis, and G. C. Papavassiliou, “Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4,” Phys. Rev. B 73(11), 115206 (2006).
[CrossRef]

Zhang, S.

S. Zhang, G. Lanty, J. S. Lauret, E. Deleporte, P. Aude-bert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

Zheng, R.

H. Kudo, K. Murakami, H. Ishibashi, R. Zheng, Y. Yamada, and T. Taguchi, “Temperature independent Stokes Shift in an In 0.08 Ga 0.92 N Epitaxial Layer Reavealed by Photoluminescence excitation spectroscopy,” Phys. Status Solidi 228(1), 55–58 (2001) (b).
[CrossRef]

Acta Mater.

S. Zhang, G. Lanty, J. S. Lauret, E. Deleporte, P. Aude-bert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

Appl. Phys. Lett.

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett. 93(8), 081101 (2008).
[CrossRef]

A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89(17), 171110 (2006).
[CrossRef]

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device unsing a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676–678 (1994).
[CrossRef]

Chem. Phys. Lett.

T. Hattori, T. Taira, M. Era, T. Tsutsui, and S. Saito, “Highly efficient electroluminescence from a heterostructure device combiend with emissive layered-perovskite and an electron-transporting organic compound,” Chem. Phys. Lett. 254(1-2), 103–108 (1996).
[CrossRef]

IBM J. Res. Develop.

D. B. Mitzi, K. Chondroulis, and C. R. Kagan, “Organic-inorganic electronics,” IBM J. Res. Develop. 45, 29–45 (2001).
[CrossRef]

J. Lumin.

M. Shimizu and J. I. Fujisawa, “Exciton-exciton interaction in an inorganic-organic layered semiconductor, (C6H5C2H4NH3)2PbI4,” J. Lumin. 108(1-4), 189–194 (2004).
[CrossRef]

T. Goto and S. Saito, “Optical properties of ultrathin PbI2 microcrystallite in polymer,” J. Lumin. 70(1-6), 435–447 (1996).
[CrossRef]

JETP Lett.

L. V. Keldysh, JETP Lett. 29, 658 (1979).

N. J. Phys.

G. Lanty, A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

Phys. Rev. B

J. Wenus, R. Parashkov, S. Ceccarelli, A. Brehier, J. S. Lauret, M. S. Skolnick, E. Deleporte, and D. G. Lidzey, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” Phys. Rev. B 74(23), 235212 (2006).
[CrossRef]

J. I. Fujisawa and T. Ishihara, “Charge-transfer transitions between wires and spacers in an inorganic-organic quasi-one dimensional crystal methylviologen lead iodide,” Phys. Rev. B 70(11), 113203 (2004).
[CrossRef]

J. I. Fujisawa and T. Ishihara, “Excitons and biexcitons bound to a positive ion in a bismuth-doped inorganic layered lead iodide semiconductor,” Phys. Rev. B 70(20), 205330 (2004).
[CrossRef]

X. Hong, T. Ishihara, and A. V. Nurmiko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45(12), 6961–6964 (1992).
[CrossRef]

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two dimensional semiconductors (CnH2n+1NH3)2PbI4,” Phys. Rev. B 42(17), 11099–11107 (1990).
[CrossRef]

M. Kumagai and T. Takagahara, “Excitonic and nonlinear optical properties of dielectric quantum-well structures,” Phys. Rev. B 40(18), 12359–12381 (1989).
[CrossRef]

J. Lee, E. S. Koteles, and M. O. Vassel, “Luminescence linewidths of excitons in GaAs quantum wells below 150K,” Phys. Rev. B 33(8), 5512–5516 (1986).
[CrossRef]

M. S. Skolnick and D. Bimberg, “Angular-dependent magnetoluminescence study of the layer compound 2H-PbI2,” Phys. Rev. B 18(12), 7080–7088 (1978).
[CrossRef]

T. Goto, H. Makino, T. Yao, C. H. Chia, T. Makino, Y. Segawa, G. A. Mousdis, and G. C. Papavassiliou, “Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4,” Phys. Rev. B 73(11), 115206 (2006).
[CrossRef]

M. Shimizu, J. I. Fujisawa, and T. Ishihara, “Photoluminescence of the inorganic-organic layered semiconductor (C6H5C2H4NH3)2PbI4: Observation of triexciton formation,” Phys. Rev. B 74(15), 155206 (2006).
[CrossRef]

T. Kataoaka, T. Kondo, R. Ito, S. Sasaki, K. Uchida, and N. Miura, “Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4,” Phys. Rev. B 47(4), 2010–2018 (1993).
[CrossRef]

E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B 51(20), 14370–14378 (1995).
[CrossRef]

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57(19), 12428–12434 (1998).
[CrossRef]

I. Ch. Schluter and M. Schluter, “Electronic structure and optical properties of PbI2,” Phys. Rev. B 9(4), 1652–1663 (1974).
[CrossRef]

K. Ema, K. Umeda, M. Toda, C. Yajima, Y. Arai, H. Kunugita, D. Wolverson, and J. J. Davies, “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum wellmaterial,” Phys. Rev. B 73(24), 241310 (2006).
[CrossRef]

Phys. Rev. Lett.

K. Ema, M. Inomata, Y. Kato, H. Kunugita, and M. Era, “Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials,” Phys. Rev. Lett. 100(25), 257401 (2008).
[CrossRef] [PubMed]

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Phys. Status Solidi

H. Kudo, K. Murakami, H. Ishibashi, R. Zheng, Y. Yamada, and T. Taguchi, “Temperature independent Stokes Shift in an In 0.08 Ga 0.92 N Epitaxial Layer Reavealed by Photoluminescence excitation spectroscopy,” Phys. Status Solidi 228(1), 55–58 (2001) (b).
[CrossRef]

Prog. Mater. Sci.

V. G. Plekhanov, “Lead Halides: electronic properties and applications,” Prog. Mater. Sci. 49(6), 787–886 (2004).
[CrossRef]

Solid State Commun.

C. Q. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata, and R. Ito, “Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40T,” Solid State Commun. 79(3), 249–253 (1991).
[CrossRef]

X. Hong, T. Ishihara, and A. V. Nurmiko, “Photoconductivity and electroluminescence in lead iodide based natural quantum well structures,” Solid State Commun. 84(6), 657–661 (1992).
[CrossRef]

C. Q. Xu, S. Fukuta, H. Sakakura, T. Kondo, R. Ito, Y. Takahashi, and K. Kumata, “Anomalous electro-absorption in the low-temperature phase of (C10H21NH3)2PbI4,” Solid State Commun. 77(12), 923–926 (1991).
[CrossRef]

T. Ishihara, J. Takahashi, and T. Goto, “Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4,” Solid State Commun. 69(9), 933–936 (1989).
[CrossRef]

Surf. Sci.

T. Ishihara, X. Hong, J. Ding, and N. V. Nurmikko, “Dielectric confinement effect for exciton and biexciton states in PbI4-based two dimensional semiconductor structures,” Surf. Sci. 267(1-3), 323–326 (1992).
[CrossRef]

Synth. Met.

G. C. Papavassiliou and I. B. Koutselas, “Structural, optical and related properties of some natural three and lower dimensional semiconductors systems,” Synth. Met. 71(1-3), 1713–1714 (1995).
[CrossRef]

Other

R. Parashkov, A. Brehier, A. Georgiev, S. Bouchoule, X. Lafosse, J. S. Lauret, C. T. Nguyen, M. Leroux, and E. Deleporte, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” in Progress in Advanced Materials Research, N.H. Voler Nova Science, ed. (2007).

T. Kondo, T. Azuma, T. Yuasa, and R. Ito, “Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4, ” Solid state comm. 105, 253–255 (1998).

K. Tanaka, F. Sano, T. Takahashi, T. Kondo, R. Ito, and K. Ema, “Two dimensional Wannier excitons in a layered-perovskite-type crystal (C6H13NH3)2PbI4,” Solid sate comm. 122, 249–252 (2002).

A. Kavokin, and G. Malpuech, Cavity Polaritons (Elsevier, Amsterdam, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) and b) Pictures of the green photoluminescence of a PEPI thin layer excited by a UV laser.

Fig. 2
Fig. 2

a) Sketch of the perovskite structure. The blue points at the center of the octahedrons represent the Pb atoms while I atoms are displayed in green. The red symbols represent the organic chains. b) XRD rocking curve of a 50 nm (C6H5C2H4-NH3)2PbI4 layer.

Fig. 3
Fig. 3

a) PL (black curve) excited at 2.8 eV and PLE (grey curve) detected at the energy of S2 (2.337 eV) at 10 K; b) Variation of the PL intensity of S1 and S2 measured as a function of the pump power at 2 K; c) Photoluminescence spectra excited at 2.5 eV for temperatures ranging from 10 K to 300 K.

Fig. 4
Fig. 4

a) S1 Integrated PL intensity as a function of 1000/T; b) Example of deconvolution of the S1 and S2 PL lines at 80 K in the PL spectra. The scattered line is the experimental curve, the red solid line is the result of the deconvolution with two lorentzians shown with green solid lines; c) S1 FWHM as a function of temperature; the dashed line is the calculated FWHM following the model explained in the text.

Fig. 5
Fig. 5

Energy of the S1 PL line (squares), and of the lower energy line in the PLE spectra (triangles) as a function of temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ = Γ 0 + a T + Γ L O e x p ( ω L O k T ) 1 + Γ i m p e x p ( E a k T )

Metrics