Abstract

The dynamics of excited states in o-xylene molecules has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. The ultrafast internal conversion from the S2 state to the vibrationally hot S1 state on timescale of 60 fs is observed on real time. The secondarily populated high vibronic S1 state deactivates further to the S0 state on timescale of 9.85 ps. Interestingly, the lifetime of the low vibronic S1 state is much longer, extrapolated to ~12.7 ns. The great differences of lifetime of different vibronic S1 state are due to their different radiationless dynamics.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69(6), 1897–2003 (2006).
    [CrossRef]
  2. A. H. Zewail, “Laser Femtochemistry,” Science 242(4886), 1645–1653 (1988).
    [CrossRef] [PubMed]
  3. A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers,” Angew. Chem. Int. Ed. 39(15), 2586–2631 (2000).
    [CrossRef]
  4. A. Stolow, “Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules,” Annu. Rev. Phys. Chem. 54(1), 89–119 (2003).
    [CrossRef] [PubMed]
  5. T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57(1), 555–592 (2006).
    [CrossRef] [PubMed]
  6. D. H. Paik, I.-R. Lee, D.-S. Yang, J. S. Baskin, and A. H. Zewail, “Electrons in finite-sized water cavities: hydration dynamics observed in real time,” Science 306(5696), 672–675 (2004).
    [CrossRef] [PubMed]
  7. N. K. Schwalb and F. Temps, “Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine,” J. Am. Chem. Soc. 129(30), 9272–9273 (2007).
    [CrossRef] [PubMed]
  8. A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1758 (2004).
    [CrossRef] [PubMed]
  9. W. M. Kwok, C. Ma, and D. L. Phillips, “A doorway state leads to photostability or triplet photodamage in thymine DNA,” J. Am. Chem. Soc. 130(15), 5131–5139 (2008).
    [CrossRef] [PubMed]
  10. C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
    [CrossRef] [PubMed]
  11. A. M. Rijs, M. H. M. Janssen, E. T. Chrysostom, and C. C. Hayden, “Femtosecond coincidence imaging of multichannel multiphoton dynamics,” Phys. Rev. Lett. 92(12), 123002 (2004).
    [CrossRef] [PubMed]
  12. P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
    [CrossRef] [PubMed]
  13. M. Lenner and C. Spielmann, “Femtosecond time-resolved saturation dynamics of BDN-doped polycarbonate,” Opt. Express 14(5), 1850–1855 (2006).
    [CrossRef] [PubMed]
  14. A. Stolow, V. Blanchet, M. Z. Zgierski, and T. Seideman, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401(6748), 52–54 (1999).
    [CrossRef]
  15. M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008).
    [CrossRef] [PubMed]
  16. W. Domcke and G. Stock, “Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time,” Adv. Chem. Phys. 100, 1–169 (1997).
    [CrossRef]
  17. J. H. Callomon, J. E. Parkin, and R. Lopez-Delgado, “Non-radiative relaxation of the excited à 1B2u state of benzene,” Chem. Phys. Lett. 13(2), 125–131 (1972).
    [CrossRef]
  18. A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. I. General aspects of benzene single vibronic level fluorescence,” J. Am. Chem. Soc. 97(8), 1993–2005 (1975).
    [CrossRef]
  19. A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. II. Single vibronic level fluorescence as a probe in the assignment of the absorption spectrum,” J. Am. Chem. Soc. 97(8), 2005–2013 (1975).
    [CrossRef]
  20. P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A 105(23), 5613–5617 (2001).
    [CrossRef]
  21. Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
    [CrossRef] [PubMed]
  22. Y. Liu, Q. Zheng, Y. Zhang, R. Zhang, Y. Wang, and B. Zhang, “Photolysis of 1-C4H9I and 2-C4H9I at 266 nm: direct observation of the effect of branching on the photodissociation mechanism,” ChemPhysChem 10(5), 830–834 (2009).
    [CrossRef] [PubMed]
  23. Z. Wei, F. Zhang, Y. Wang, and B. Zhang, “Predissociation Dynamics of B State of Methyl Iodide with Femtosecond Pump-probe Technique,” Chin. J. Chem. Phys. 20(4), 419–424 (2007).
    [CrossRef]
  24. V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
    [CrossRef]
  25. L. Wang, H. Kohguchi, and T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Faraday Discuss. 113, 37–46 (1999).
    [CrossRef]
  26. W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Inernal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett. 281(1-3), 20–26 (1997).
    [CrossRef]
  27. C. N. Yang, “On the angular distribution in nuclear reactions and coincidence measurements,” Phys. Rev. 74(7), 764–772 (1948).
    [CrossRef]
  28. T. Droz, S. Leutwyler, M. Mandziuk, and Z. Bačić, “Intermolecular vibrations of o-xylene·Ar in the S0 and S1 states: Experiment and quantum three dimensional calculations,” J. Chem. Phys. 101(8), 6412–6423 (1994).
    [CrossRef]
  29. T. A. Stephenson and S. A. Rice, “Vibrational state dependence of radiationless processes in 1B2u benzene,” J. Chem. Phys. 81(3), 1073–1082 (1984).
    [CrossRef]
  30. W. A. Noyes., “W. A. Mulac, D. A. Harter, “Some aspects of the photochemistry of benzene,” J. Chem. Phys. 44(5), 2100–2106 (1966).
    [CrossRef]
  31. P. T. Whiteside, A. K. King, and K. L. Reid, “Photoelectron spectroscopy of S1 toluene: I. Photoionization propensities of selected vibrational levels in S1 toluene,” J. Chem. Phys. 123(20), 204316 (2005).
    [CrossRef] [PubMed]
  32. P. T. Whiteside, A. K. King, J. A. Davies, K. L. Reid, M. Towrie, and P. Matousek, “Photoelectron spectroscopy of S1 toluene: II. Intramolecular dynamics of selected vibrational levels in S1 toluene studied by nanosecond and picosecond time-resolved photoelectron spectroscopies,” J. Chem. Phys. 123(20), 204317 (2005).
    [CrossRef] [PubMed]
  33. K. G. Spears and S. A. Rice, “Study of the Lifetimes of Individual Vibronic States of the Isolated Benzene Molecule,” J. Chem. Phys. 55(12), 5561–5581 (1971).
    [CrossRef]
  34. L. Wunsch, H. J. Neusser, and E. W. Schlag, “Two-photon absorption in the collisionless gas phase: lifetimes of new vibrational levels in benzene,” Chem. Phys. Lett. 32(2), 210–215 (1975).
    [CrossRef]
  35. M. Clara, Th. Hellerer, and H. J. Neusser, “Fast decay of high vibronic S1 state in gas-phase benzene,” Appl. Phys. B 71, 431–437 (2000).
  36. E. Riedle, H. J. Neusser, and E. W. Schlag, “Sub-Doppler high-resolution spectra of benzene: anomalous results in the “channel three” region,” J. Phys. Chem. 86(25), 4847–4850 (1982).
    [CrossRef]
  37. A. L. Sobolewski, C. Woywod, and W. Domcke, “Ab initio investigation of potential-energy surfaces involved in the photophysics of benzene and pyrazine,” J. Chem. Phys. 98(7), 5627–5641 (1993).
    [CrossRef]
  38. D. Bryce-Smith and H. C. Longuet-Higgins, “Photochemical transformation of the benzene ring,” Chem. Commun. 17(17), 593 (1966).
  39. C. E. Otis, J. L. Knee, and P. M. Johnson, “Nonradiative processes in the channel three region of the S1 state of ultracold benzene,” J. Phys. Chem. 87(12), 2232–2239 (1983).
    [CrossRef]

2009 (1)

Y. Liu, Q. Zheng, Y. Zhang, R. Zhang, Y. Wang, and B. Zhang, “Photolysis of 1-C4H9I and 2-C4H9I at 266 nm: direct observation of the effect of branching on the photodissociation mechanism,” ChemPhysChem 10(5), 830–834 (2009).
[CrossRef] [PubMed]

2008 (2)

W. M. Kwok, C. Ma, and D. L. Phillips, “A doorway state leads to photostability or triplet photodamage in thymine DNA,” J. Am. Chem. Soc. 130(15), 5131–5139 (2008).
[CrossRef] [PubMed]

M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008).
[CrossRef] [PubMed]

2007 (2)

N. K. Schwalb and F. Temps, “Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine,” J. Am. Chem. Soc. 129(30), 9272–9273 (2007).
[CrossRef] [PubMed]

Z. Wei, F. Zhang, Y. Wang, and B. Zhang, “Predissociation Dynamics of B State of Methyl Iodide with Femtosecond Pump-probe Technique,” Chin. J. Chem. Phys. 20(4), 419–424 (2007).
[CrossRef]

2006 (4)

Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
[CrossRef] [PubMed]

T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57(1), 555–592 (2006).
[CrossRef] [PubMed]

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69(6), 1897–2003 (2006).
[CrossRef]

M. Lenner and C. Spielmann, “Femtosecond time-resolved saturation dynamics of BDN-doped polycarbonate,” Opt. Express 14(5), 1850–1855 (2006).
[CrossRef] [PubMed]

2005 (3)

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

P. T. Whiteside, A. K. King, and K. L. Reid, “Photoelectron spectroscopy of S1 toluene: I. Photoionization propensities of selected vibrational levels in S1 toluene,” J. Chem. Phys. 123(20), 204316 (2005).
[CrossRef] [PubMed]

P. T. Whiteside, A. K. King, J. A. Davies, K. L. Reid, M. Towrie, and P. Matousek, “Photoelectron spectroscopy of S1 toluene: II. Intramolecular dynamics of selected vibrational levels in S1 toluene studied by nanosecond and picosecond time-resolved photoelectron spectroscopies,” J. Chem. Phys. 123(20), 204317 (2005).
[CrossRef] [PubMed]

2004 (3)

A. M. Rijs, M. H. M. Janssen, E. T. Chrysostom, and C. C. Hayden, “Femtosecond coincidence imaging of multichannel multiphoton dynamics,” Phys. Rev. Lett. 92(12), 123002 (2004).
[CrossRef] [PubMed]

D. H. Paik, I.-R. Lee, D.-S. Yang, J. S. Baskin, and A. H. Zewail, “Electrons in finite-sized water cavities: hydration dynamics observed in real time,” Science 306(5696), 672–675 (2004).
[CrossRef] [PubMed]

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1758 (2004).
[CrossRef] [PubMed]

2003 (2)

A. Stolow, “Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules,” Annu. Rev. Phys. Chem. 54(1), 89–119 (2003).
[CrossRef] [PubMed]

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
[CrossRef]

2001 (1)

P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A 105(23), 5613–5617 (2001).
[CrossRef]

2000 (2)

M. Clara, Th. Hellerer, and H. J. Neusser, “Fast decay of high vibronic S1 state in gas-phase benzene,” Appl. Phys. B 71, 431–437 (2000).

A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers,” Angew. Chem. Int. Ed. 39(15), 2586–2631 (2000).
[CrossRef]

1999 (2)

A. Stolow, V. Blanchet, M. Z. Zgierski, and T. Seideman, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401(6748), 52–54 (1999).
[CrossRef]

L. Wang, H. Kohguchi, and T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Faraday Discuss. 113, 37–46 (1999).
[CrossRef]

1997 (2)

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Inernal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett. 281(1-3), 20–26 (1997).
[CrossRef]

W. Domcke and G. Stock, “Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time,” Adv. Chem. Phys. 100, 1–169 (1997).
[CrossRef]

1994 (1)

T. Droz, S. Leutwyler, M. Mandziuk, and Z. Bačić, “Intermolecular vibrations of o-xylene·Ar in the S0 and S1 states: Experiment and quantum three dimensional calculations,” J. Chem. Phys. 101(8), 6412–6423 (1994).
[CrossRef]

1993 (1)

A. L. Sobolewski, C. Woywod, and W. Domcke, “Ab initio investigation of potential-energy surfaces involved in the photophysics of benzene and pyrazine,” J. Chem. Phys. 98(7), 5627–5641 (1993).
[CrossRef]

1988 (1)

A. H. Zewail, “Laser Femtochemistry,” Science 242(4886), 1645–1653 (1988).
[CrossRef] [PubMed]

1984 (1)

T. A. Stephenson and S. A. Rice, “Vibrational state dependence of radiationless processes in 1B2u benzene,” J. Chem. Phys. 81(3), 1073–1082 (1984).
[CrossRef]

1983 (1)

C. E. Otis, J. L. Knee, and P. M. Johnson, “Nonradiative processes in the channel three region of the S1 state of ultracold benzene,” J. Phys. Chem. 87(12), 2232–2239 (1983).
[CrossRef]

1982 (1)

E. Riedle, H. J. Neusser, and E. W. Schlag, “Sub-Doppler high-resolution spectra of benzene: anomalous results in the “channel three” region,” J. Phys. Chem. 86(25), 4847–4850 (1982).
[CrossRef]

1975 (3)

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. I. General aspects of benzene single vibronic level fluorescence,” J. Am. Chem. Soc. 97(8), 1993–2005 (1975).
[CrossRef]

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. II. Single vibronic level fluorescence as a probe in the assignment of the absorption spectrum,” J. Am. Chem. Soc. 97(8), 2005–2013 (1975).
[CrossRef]

L. Wunsch, H. J. Neusser, and E. W. Schlag, “Two-photon absorption in the collisionless gas phase: lifetimes of new vibrational levels in benzene,” Chem. Phys. Lett. 32(2), 210–215 (1975).
[CrossRef]

1972 (1)

J. H. Callomon, J. E. Parkin, and R. Lopez-Delgado, “Non-radiative relaxation of the excited à 1B2u state of benzene,” Chem. Phys. Lett. 13(2), 125–131 (1972).
[CrossRef]

1971 (1)

K. G. Spears and S. A. Rice, “Study of the Lifetimes of Individual Vibronic States of the Isolated Benzene Molecule,” J. Chem. Phys. 55(12), 5561–5581 (1971).
[CrossRef]

1966 (2)

W. A. Noyes., “W. A. Mulac, D. A. Harter, “Some aspects of the photochemistry of benzene,” J. Chem. Phys. 44(5), 2100–2106 (1966).
[CrossRef]

D. Bryce-Smith and H. C. Longuet-Higgins, “Photochemical transformation of the benzene ring,” Chem. Commun. 17(17), 593 (1966).

1948 (1)

C. N. Yang, “On the angular distribution in nuclear reactions and coincidence measurements,” Phys. Rev. 74(7), 764–772 (1948).
[CrossRef]

Bacic, Z.

T. Droz, S. Leutwyler, M. Mandziuk, and Z. Bačić, “Intermolecular vibrations of o-xylene·Ar in the S0 and S1 states: Experiment and quantum three dimensional calculations,” J. Chem. Phys. 101(8), 6412–6423 (1994).
[CrossRef]

Baskin, J. S.

D. H. Paik, I.-R. Lee, D.-S. Yang, J. S. Baskin, and A. H. Zewail, “Electrons in finite-sized water cavities: hydration dynamics observed in real time,” Science 306(5696), 672–675 (2004).
[CrossRef] [PubMed]

Blanchet, V.

A. Stolow, V. Blanchet, M. Z. Zgierski, and T. Seideman, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401(6748), 52–54 (1999).
[CrossRef]

Bragg, A. E.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1758 (2004).
[CrossRef] [PubMed]

Bryce-Smith, D.

D. Bryce-Smith and H. C. Longuet-Higgins, “Photochemical transformation of the benzene ring,” Chem. Commun. 17(17), 593 (1966).

Callomon, J. H.

J. H. Callomon, J. E. Parkin, and R. Lopez-Delgado, “Non-radiative relaxation of the excited à 1B2u state of benzene,” Chem. Phys. Lett. 13(2), 125–131 (1972).
[CrossRef]

Chang, C.

M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008).
[CrossRef] [PubMed]

Chrysostom, E. T.

A. M. Rijs, M. H. M. Janssen, E. T. Chrysostom, and C. C. Hayden, “Femtosecond coincidence imaging of multichannel multiphoton dynamics,” Phys. Rev. Lett. 92(12), 123002 (2004).
[CrossRef] [PubMed]

Clara, M.

M. Clara, Th. Hellerer, and H. J. Neusser, “Fast decay of high vibronic S1 state in gas-phase benzene,” Appl. Phys. B 71, 431–437 (2000).

Daniel, C.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Davies, J. A.

P. T. Whiteside, A. K. King, J. A. Davies, K. L. Reid, M. Towrie, and P. Matousek, “Photoelectron spectroscopy of S1 toluene: II. Intramolecular dynamics of selected vibrational levels in S1 toluene studied by nanosecond and picosecond time-resolved photoelectron spectroscopies,” J. Chem. Phys. 123(20), 204317 (2005).
[CrossRef] [PubMed]

Dedonder-Lardeux, C.

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Inernal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett. 281(1-3), 20–26 (1997).
[CrossRef]

Domcke, W.

W. Domcke and G. Stock, “Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time,” Adv. Chem. Phys. 100, 1–169 (1997).
[CrossRef]

A. L. Sobolewski, C. Woywod, and W. Domcke, “Ab initio investigation of potential-energy surfaces involved in the photophysics of benzene and pyrazine,” J. Chem. Phys. 98(7), 5627–5641 (1993).
[CrossRef]

Dribinski, V.

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
[CrossRef]

Droz, T.

T. Droz, S. Leutwyler, M. Mandziuk, and Z. Bačić, “Intermolecular vibrations of o-xylene·Ar in the S0 and S1 states: Experiment and quantum three dimensional calculations,” J. Chem. Phys. 101(8), 6412–6423 (1994).
[CrossRef]

Farmanara, P.

P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A 105(23), 5613–5617 (2001).
[CrossRef]

Freudenberg, Th.

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Inernal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett. 281(1-3), 20–26 (1997).
[CrossRef]

Full, J.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

González, L.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Hayden, C. C.

A. M. Rijs, M. H. M. Janssen, E. T. Chrysostom, and C. C. Hayden, “Femtosecond coincidence imaging of multichannel multiphoton dynamics,” Phys. Rev. Lett. 92(12), 123002 (2004).
[CrossRef] [PubMed]

Hellerer, Th.

M. Clara, Th. Hellerer, and H. J. Neusser, “Fast decay of high vibronic S1 state in gas-phase benzene,” Appl. Phys. B 71, 431–437 (2000).

Hertel, I. V.

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69(6), 1897–2003 (2006).
[CrossRef]

P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A 105(23), 5613–5617 (2001).
[CrossRef]

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Inernal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett. 281(1-3), 20–26 (1997).
[CrossRef]

Hou, Y.

M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008).
[CrossRef] [PubMed]

Janssen, M. H. M.

A. M. Rijs, M. H. M. Janssen, E. T. Chrysostom, and C. C. Hayden, “Femtosecond coincidence imaging of multichannel multiphoton dynamics,” Phys. Rev. Lett. 92(12), 123002 (2004).
[CrossRef] [PubMed]

Johnson, P. M.

C. E. Otis, J. L. Knee, and P. M. Johnson, “Nonradiative processes in the channel three region of the S1 state of ultracold benzene,” J. Phys. Chem. 87(12), 2232–2239 (1983).
[CrossRef]

Jouvet, C.

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Inernal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett. 281(1-3), 20–26 (1997).
[CrossRef]

King, A. K.

P. T. Whiteside, A. K. King, and K. L. Reid, “Photoelectron spectroscopy of S1 toluene: I. Photoionization propensities of selected vibrational levels in S1 toluene,” J. Chem. Phys. 123(20), 204316 (2005).
[CrossRef] [PubMed]

P. T. Whiteside, A. K. King, J. A. Davies, K. L. Reid, M. Towrie, and P. Matousek, “Photoelectron spectroscopy of S1 toluene: II. Intramolecular dynamics of selected vibrational levels in S1 toluene studied by nanosecond and picosecond time-resolved photoelectron spectroscopies,” J. Chem. Phys. 123(20), 204317 (2005).
[CrossRef] [PubMed]

Knee, J. L.

C. E. Otis, J. L. Knee, and P. M. Johnson, “Nonradiative processes in the channel three region of the S1 state of ultracold benzene,” J. Phys. Chem. 87(12), 2232–2239 (1983).
[CrossRef]

Knight, A. E. W.

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. I. General aspects of benzene single vibronic level fluorescence,” J. Am. Chem. Soc. 97(8), 1993–2005 (1975).
[CrossRef]

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. II. Single vibronic level fluorescence as a probe in the assignment of the absorption spectrum,” J. Am. Chem. Soc. 97(8), 2005–2013 (1975).
[CrossRef]

Kohguchi, H.

L. Wang, H. Kohguchi, and T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Faraday Discuss. 113, 37–46 (1999).
[CrossRef]

Kukura, P.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

Kwok, W. M.

W. M. Kwok, C. Ma, and D. L. Phillips, “A doorway state leads to photostability or triplet photodamage in thymine DNA,” J. Am. Chem. Soc. 130(15), 5131–5139 (2008).
[CrossRef] [PubMed]

Lee, I.-R.

D. H. Paik, I.-R. Lee, D.-S. Yang, J. S. Baskin, and A. H. Zewail, “Electrons in finite-sized water cavities: hydration dynamics observed in real time,” Science 306(5696), 672–675 (2004).
[CrossRef] [PubMed]

Lenner, M.

Leutwyler, S.

T. Droz, S. Leutwyler, M. Mandziuk, and Z. Bačić, “Intermolecular vibrations of o-xylene·Ar in the S0 and S1 states: Experiment and quantum three dimensional calculations,” J. Chem. Phys. 101(8), 6412–6423 (1994).
[CrossRef]

Liu, Y.

Y. Liu, Q. Zheng, Y. Zhang, R. Zhang, Y. Wang, and B. Zhang, “Photolysis of 1-C4H9I and 2-C4H9I at 266 nm: direct observation of the effect of branching on the photodissociation mechanism,” ChemPhysChem 10(5), 830–834 (2009).
[CrossRef] [PubMed]

Longuet-Higgins, H. C.

D. Bryce-Smith and H. C. Longuet-Higgins, “Photochemical transformation of the benzene ring,” Chem. Commun. 17(17), 593 (1966).

Lopez-Delgado, R.

J. H. Callomon, J. E. Parkin, and R. Lopez-Delgado, “Non-radiative relaxation of the excited à 1B2u state of benzene,” Chem. Phys. Lett. 13(2), 125–131 (1972).
[CrossRef]

Lupulescu, C.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Ma, C.

W. M. Kwok, C. Ma, and D. L. Phillips, “A doorway state leads to photostability or triplet photodamage in thymine DNA,” J. Am. Chem. Soc. 130(15), 5131–5139 (2008).
[CrossRef] [PubMed]

Mandelshtam, V. A.

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
[CrossRef]

Mandziuk, M.

T. Droz, S. Leutwyler, M. Mandziuk, and Z. Bačić, “Intermolecular vibrations of o-xylene·Ar in the S0 and S1 states: Experiment and quantum three dimensional calculations,” J. Chem. Phys. 101(8), 6412–6423 (1994).
[CrossRef]

Manz, J.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Mathies, R. A.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

Matousek, P.

P. T. Whiteside, A. K. King, J. A. Davies, K. L. Reid, M. Towrie, and P. Matousek, “Photoelectron spectroscopy of S1 toluene: II. Intramolecular dynamics of selected vibrational levels in S1 toluene studied by nanosecond and picosecond time-resolved photoelectron spectroscopies,” J. Chem. Phys. 123(20), 204317 (2005).
[CrossRef] [PubMed]

McCamant, D. W.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

Merli, A.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Neumark, D. M.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1758 (2004).
[CrossRef] [PubMed]

Neusser, H. J.

M. Clara, Th. Hellerer, and H. J. Neusser, “Fast decay of high vibronic S1 state in gas-phase benzene,” Appl. Phys. B 71, 431–437 (2000).

E. Riedle, H. J. Neusser, and E. W. Schlag, “Sub-Doppler high-resolution spectra of benzene: anomalous results in the “channel three” region,” J. Phys. Chem. 86(25), 4847–4850 (1982).
[CrossRef]

L. Wunsch, H. J. Neusser, and E. W. Schlag, “Two-photon absorption in the collisionless gas phase: lifetimes of new vibrational levels in benzene,” Chem. Phys. Lett. 32(2), 210–215 (1975).
[CrossRef]

Ng, C. Y.

M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008).
[CrossRef] [PubMed]

Nishizawa, K.

M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008).
[CrossRef] [PubMed]

Noyes, W. A.

W. A. Noyes., “W. A. Mulac, D. A. Harter, “Some aspects of the photochemistry of benzene,” J. Chem. Phys. 44(5), 2100–2106 (1966).
[CrossRef]

Ohshimo, K.

M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008).
[CrossRef] [PubMed]

Oku, M.

M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008).
[CrossRef] [PubMed]

Ossadtchi, A.

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
[CrossRef]

Otis, C. E.

C. E. Otis, J. L. Knee, and P. M. Johnson, “Nonradiative processes in the channel three region of the S1 state of ultracold benzene,” J. Phys. Chem. 87(12), 2232–2239 (1983).
[CrossRef]

Paik, D. H.

D. H. Paik, I.-R. Lee, D.-S. Yang, J. S. Baskin, and A. H. Zewail, “Electrons in finite-sized water cavities: hydration dynamics observed in real time,” Science 306(5696), 672–675 (2004).
[CrossRef] [PubMed]

Parkin, J. E.

J. H. Callomon, J. E. Parkin, and R. Lopez-Delgado, “Non-radiative relaxation of the excited à 1B2u state of benzene,” Chem. Phys. Lett. 13(2), 125–131 (1972).
[CrossRef]

Parmenter, C. S.

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. II. Single vibronic level fluorescence as a probe in the assignment of the absorption spectrum,” J. Am. Chem. Soc. 97(8), 2005–2013 (1975).
[CrossRef]

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. I. General aspects of benzene single vibronic level fluorescence,” J. Am. Chem. Soc. 97(8), 1993–2005 (1975).
[CrossRef]

Phillips, D. L.

W. M. Kwok, C. Ma, and D. L. Phillips, “A doorway state leads to photostability or triplet photodamage in thymine DNA,” J. Am. Chem. Soc. 130(15), 5131–5139 (2008).
[CrossRef] [PubMed]

Radloff, W.

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69(6), 1897–2003 (2006).
[CrossRef]

P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A 105(23), 5613–5617 (2001).
[CrossRef]

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Inernal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett. 281(1-3), 20–26 (1997).
[CrossRef]

Reed, B.

M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008).
[CrossRef] [PubMed]

Reid, K. L.

P. T. Whiteside, A. K. King, and K. L. Reid, “Photoelectron spectroscopy of S1 toluene: I. Photoionization propensities of selected vibrational levels in S1 toluene,” J. Chem. Phys. 123(20), 204316 (2005).
[CrossRef] [PubMed]

P. T. Whiteside, A. K. King, J. A. Davies, K. L. Reid, M. Towrie, and P. Matousek, “Photoelectron spectroscopy of S1 toluene: II. Intramolecular dynamics of selected vibrational levels in S1 toluene studied by nanosecond and picosecond time-resolved photoelectron spectroscopies,” J. Chem. Phys. 123(20), 204317 (2005).
[CrossRef] [PubMed]

Reisler, H.

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
[CrossRef]

Rice, S. A.

T. A. Stephenson and S. A. Rice, “Vibrational state dependence of radiationless processes in 1B2u benzene,” J. Chem. Phys. 81(3), 1073–1082 (1984).
[CrossRef]

K. G. Spears and S. A. Rice, “Study of the Lifetimes of Individual Vibronic States of the Isolated Benzene Molecule,” J. Chem. Phys. 55(12), 5561–5581 (1971).
[CrossRef]

Riedle, E.

E. Riedle, H. J. Neusser, and E. W. Schlag, “Sub-Doppler high-resolution spectra of benzene: anomalous results in the “channel three” region,” J. Phys. Chem. 86(25), 4847–4850 (1982).
[CrossRef]

Rijs, A. M.

A. M. Rijs, M. H. M. Janssen, E. T. Chrysostom, and C. C. Hayden, “Femtosecond coincidence imaging of multichannel multiphoton dynamics,” Phys. Rev. Lett. 92(12), 123002 (2004).
[CrossRef] [PubMed]

Schlag, E. W.

E. Riedle, H. J. Neusser, and E. W. Schlag, “Sub-Doppler high-resolution spectra of benzene: anomalous results in the “channel three” region,” J. Phys. Chem. 86(25), 4847–4850 (1982).
[CrossRef]

L. Wunsch, H. J. Neusser, and E. W. Schlag, “Two-photon absorption in the collisionless gas phase: lifetimes of new vibrational levels in benzene,” Chem. Phys. Lett. 32(2), 210–215 (1975).
[CrossRef]

Schuyler, M. W.

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. I. General aspects of benzene single vibronic level fluorescence,” J. Am. Chem. Soc. 97(8), 1993–2005 (1975).
[CrossRef]

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. II. Single vibronic level fluorescence as a probe in the assignment of the absorption spectrum,” J. Am. Chem. Soc. 97(8), 2005–2013 (1975).
[CrossRef]

Schwalb, N. K.

N. K. Schwalb and F. Temps, “Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine,” J. Am. Chem. Soc. 129(30), 9272–9273 (2007).
[CrossRef] [PubMed]

Seideman, T.

A. Stolow, V. Blanchet, M. Z. Zgierski, and T. Seideman, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401(6748), 52–54 (1999).
[CrossRef]

Sobolewski, A. L.

A. L. Sobolewski, C. Woywod, and W. Domcke, “Ab initio investigation of potential-energy surfaces involved in the photophysics of benzene and pyrazine,” J. Chem. Phys. 98(7), 5627–5641 (1993).
[CrossRef]

Solgadi, D.

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Inernal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett. 281(1-3), 20–26 (1997).
[CrossRef]

Spears, K. G.

K. G. Spears and S. A. Rice, “Study of the Lifetimes of Individual Vibronic States of the Isolated Benzene Molecule,” J. Chem. Phys. 55(12), 5561–5581 (1971).
[CrossRef]

Spielmann, C.

Stephenson, T. A.

T. A. Stephenson and S. A. Rice, “Vibrational state dependence of radiationless processes in 1B2u benzene,” J. Chem. Phys. 81(3), 1073–1082 (1984).
[CrossRef]

Stert, V.

P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A 105(23), 5613–5617 (2001).
[CrossRef]

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Inernal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett. 281(1-3), 20–26 (1997).
[CrossRef]

Stock, G.

W. Domcke and G. Stock, “Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time,” Adv. Chem. Phys. 100, 1–169 (1997).
[CrossRef]

Stolow, A.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1758 (2004).
[CrossRef] [PubMed]

A. Stolow, “Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules,” Annu. Rev. Phys. Chem. 54(1), 89–119 (2003).
[CrossRef] [PubMed]

A. Stolow, V. Blanchet, M. Z. Zgierski, and T. Seideman, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401(6748), 52–54 (1999).
[CrossRef]

Suzuki, T.

M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008).
[CrossRef] [PubMed]

T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57(1), 555–592 (2006).
[CrossRef] [PubMed]

L. Wang, H. Kohguchi, and T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Faraday Discuss. 113, 37–46 (1999).
[CrossRef]

Temps, F.

N. K. Schwalb and F. Temps, “Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine,” J. Am. Chem. Soc. 129(30), 9272–9273 (2007).
[CrossRef] [PubMed]

Towrie, M.

P. T. Whiteside, A. K. King, J. A. Davies, K. L. Reid, M. Towrie, and P. Matousek, “Photoelectron spectroscopy of S1 toluene: II. Intramolecular dynamics of selected vibrational levels in S1 toluene studied by nanosecond and picosecond time-resolved photoelectron spectroscopies,” J. Chem. Phys. 123(20), 204317 (2005).
[CrossRef] [PubMed]

Vajda, Š.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Wandschneider, D. B.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

Wang, L.

L. Wang, H. Kohguchi, and T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Faraday Discuss. 113, 37–46 (1999).
[CrossRef]

Wang, Y.

Y. Liu, Q. Zheng, Y. Zhang, R. Zhang, Y. Wang, and B. Zhang, “Photolysis of 1-C4H9I and 2-C4H9I at 266 nm: direct observation of the effect of branching on the photodissociation mechanism,” ChemPhysChem 10(5), 830–834 (2009).
[CrossRef] [PubMed]

Z. Wei, F. Zhang, Y. Wang, and B. Zhang, “Predissociation Dynamics of B State of Methyl Iodide with Femtosecond Pump-probe Technique,” Chin. J. Chem. Phys. 20(4), 419–424 (2007).
[CrossRef]

Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
[CrossRef] [PubMed]

Wei, Z.

Z. Wei, F. Zhang, Y. Wang, and B. Zhang, “Predissociation Dynamics of B State of Methyl Iodide with Femtosecond Pump-probe Technique,” Chin. J. Chem. Phys. 20(4), 419–424 (2007).
[CrossRef]

Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
[CrossRef] [PubMed]

Whiteside, P. T.

P. T. Whiteside, A. K. King, and K. L. Reid, “Photoelectron spectroscopy of S1 toluene: I. Photoionization propensities of selected vibrational levels in S1 toluene,” J. Chem. Phys. 123(20), 204316 (2005).
[CrossRef] [PubMed]

P. T. Whiteside, A. K. King, J. A. Davies, K. L. Reid, M. Towrie, and P. Matousek, “Photoelectron spectroscopy of S1 toluene: II. Intramolecular dynamics of selected vibrational levels in S1 toluene studied by nanosecond and picosecond time-resolved photoelectron spectroscopies,” J. Chem. Phys. 123(20), 204317 (2005).
[CrossRef] [PubMed]

Wöste, L.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Woywod, C.

A. L. Sobolewski, C. Woywod, and W. Domcke, “Ab initio investigation of potential-energy surfaces involved in the photophysics of benzene and pyrazine,” J. Chem. Phys. 98(7), 5627–5641 (1993).
[CrossRef]

Wunsch, L.

L. Wunsch, H. J. Neusser, and E. W. Schlag, “Two-photon absorption in the collisionless gas phase: lifetimes of new vibrational levels in benzene,” Chem. Phys. Lett. 32(2), 210–215 (1975).
[CrossRef]

Xing, X.

M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008).
[CrossRef] [PubMed]

Xu, H.

M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008).
[CrossRef] [PubMed]

Yang, C. N.

C. N. Yang, “On the angular distribution in nuclear reactions and coincidence measurements,” Phys. Rev. 74(7), 764–772 (1948).
[CrossRef]

Yang, D.-S.

D. H. Paik, I.-R. Lee, D.-S. Yang, J. S. Baskin, and A. H. Zewail, “Electrons in finite-sized water cavities: hydration dynamics observed in real time,” Science 306(5696), 672–675 (2004).
[CrossRef] [PubMed]

Yoon, S.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

Zewail, A. H.

D. H. Paik, I.-R. Lee, D.-S. Yang, J. S. Baskin, and A. H. Zewail, “Electrons in finite-sized water cavities: hydration dynamics observed in real time,” Science 306(5696), 672–675 (2004).
[CrossRef] [PubMed]

A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers,” Angew. Chem. Int. Ed. 39(15), 2586–2631 (2000).
[CrossRef]

A. H. Zewail, “Laser Femtochemistry,” Science 242(4886), 1645–1653 (1988).
[CrossRef] [PubMed]

Zgierski, M. Z.

A. Stolow, V. Blanchet, M. Z. Zgierski, and T. Seideman, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401(6748), 52–54 (1999).
[CrossRef]

Zhang, B.

Y. Liu, Q. Zheng, Y. Zhang, R. Zhang, Y. Wang, and B. Zhang, “Photolysis of 1-C4H9I and 2-C4H9I at 266 nm: direct observation of the effect of branching on the photodissociation mechanism,” ChemPhysChem 10(5), 830–834 (2009).
[CrossRef] [PubMed]

Z. Wei, F. Zhang, Y. Wang, and B. Zhang, “Predissociation Dynamics of B State of Methyl Iodide with Femtosecond Pump-probe Technique,” Chin. J. Chem. Phys. 20(4), 419–424 (2007).
[CrossRef]

Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
[CrossRef] [PubMed]

Zhang, F.

Z. Wei, F. Zhang, Y. Wang, and B. Zhang, “Predissociation Dynamics of B State of Methyl Iodide with Femtosecond Pump-probe Technique,” Chin. J. Chem. Phys. 20(4), 419–424 (2007).
[CrossRef]

Zhang, R.

Y. Liu, Q. Zheng, Y. Zhang, R. Zhang, Y. Wang, and B. Zhang, “Photolysis of 1-C4H9I and 2-C4H9I at 266 nm: direct observation of the effect of branching on the photodissociation mechanism,” ChemPhysChem 10(5), 830–834 (2009).
[CrossRef] [PubMed]

Zhang, S.

Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
[CrossRef] [PubMed]

Zhang, Y.

Y. Liu, Q. Zheng, Y. Zhang, R. Zhang, Y. Wang, and B. Zhang, “Photolysis of 1-C4H9I and 2-C4H9I at 266 nm: direct observation of the effect of branching on the photodissociation mechanism,” ChemPhysChem 10(5), 830–834 (2009).
[CrossRef] [PubMed]

Zheng, Q.

Y. Liu, Q. Zheng, Y. Zhang, R. Zhang, Y. Wang, and B. Zhang, “Photolysis of 1-C4H9I and 2-C4H9I at 266 nm: direct observation of the effect of branching on the photodissociation mechanism,” ChemPhysChem 10(5), 830–834 (2009).
[CrossRef] [PubMed]

Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
[CrossRef] [PubMed]

Adv. Chem. Phys. (1)

W. Domcke and G. Stock, “Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time,” Adv. Chem. Phys. 100, 1–169 (1997).
[CrossRef]

Angew. Chem. Int. Ed. (1)

A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers,” Angew. Chem. Int. Ed. 39(15), 2586–2631 (2000).
[CrossRef]

Annu. Rev. Phys. Chem. (2)

A. Stolow, “Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules,” Annu. Rev. Phys. Chem. 54(1), 89–119 (2003).
[CrossRef] [PubMed]

T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57(1), 555–592 (2006).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M. Clara, Th. Hellerer, and H. J. Neusser, “Fast decay of high vibronic S1 state in gas-phase benzene,” Appl. Phys. B 71, 431–437 (2000).

Chem. Commun. (1)

D. Bryce-Smith and H. C. Longuet-Higgins, “Photochemical transformation of the benzene ring,” Chem. Commun. 17(17), 593 (1966).

Chem. Phys. Lett. (3)

L. Wunsch, H. J. Neusser, and E. W. Schlag, “Two-photon absorption in the collisionless gas phase: lifetimes of new vibrational levels in benzene,” Chem. Phys. Lett. 32(2), 210–215 (1975).
[CrossRef]

W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Inernal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett. 281(1-3), 20–26 (1997).
[CrossRef]

J. H. Callomon, J. E. Parkin, and R. Lopez-Delgado, “Non-radiative relaxation of the excited à 1B2u state of benzene,” Chem. Phys. Lett. 13(2), 125–131 (1972).
[CrossRef]

Chem. Rev. (1)

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1758 (2004).
[CrossRef] [PubMed]

ChemPhysChem (1)

Y. Liu, Q. Zheng, Y. Zhang, R. Zhang, Y. Wang, and B. Zhang, “Photolysis of 1-C4H9I and 2-C4H9I at 266 nm: direct observation of the effect of branching on the photodissociation mechanism,” ChemPhysChem 10(5), 830–834 (2009).
[CrossRef] [PubMed]

Chin. J. Chem. Phys. (1)

Z. Wei, F. Zhang, Y. Wang, and B. Zhang, “Predissociation Dynamics of B State of Methyl Iodide with Femtosecond Pump-probe Technique,” Chin. J. Chem. Phys. 20(4), 419–424 (2007).
[CrossRef]

Faraday Discuss. (1)

L. Wang, H. Kohguchi, and T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Faraday Discuss. 113, 37–46 (1999).
[CrossRef]

J. Am. Chem. Soc. (4)

W. M. Kwok, C. Ma, and D. L. Phillips, “A doorway state leads to photostability or triplet photodamage in thymine DNA,” J. Am. Chem. Soc. 130(15), 5131–5139 (2008).
[CrossRef] [PubMed]

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. I. General aspects of benzene single vibronic level fluorescence,” J. Am. Chem. Soc. 97(8), 1993–2005 (1975).
[CrossRef]

A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. II. Single vibronic level fluorescence as a probe in the assignment of the absorption spectrum,” J. Am. Chem. Soc. 97(8), 2005–2013 (1975).
[CrossRef]

N. K. Schwalb and F. Temps, “Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine,” J. Am. Chem. Soc. 129(30), 9272–9273 (2007).
[CrossRef] [PubMed]

J. Chem. Phys. (8)

Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006).
[CrossRef] [PubMed]

A. L. Sobolewski, C. Woywod, and W. Domcke, “Ab initio investigation of potential-energy surfaces involved in the photophysics of benzene and pyrazine,” J. Chem. Phys. 98(7), 5627–5641 (1993).
[CrossRef]

T. Droz, S. Leutwyler, M. Mandziuk, and Z. Bačić, “Intermolecular vibrations of o-xylene·Ar in the S0 and S1 states: Experiment and quantum three dimensional calculations,” J. Chem. Phys. 101(8), 6412–6423 (1994).
[CrossRef]

T. A. Stephenson and S. A. Rice, “Vibrational state dependence of radiationless processes in 1B2u benzene,” J. Chem. Phys. 81(3), 1073–1082 (1984).
[CrossRef]

W. A. Noyes., “W. A. Mulac, D. A. Harter, “Some aspects of the photochemistry of benzene,” J. Chem. Phys. 44(5), 2100–2106 (1966).
[CrossRef]

P. T. Whiteside, A. K. King, and K. L. Reid, “Photoelectron spectroscopy of S1 toluene: I. Photoionization propensities of selected vibrational levels in S1 toluene,” J. Chem. Phys. 123(20), 204316 (2005).
[CrossRef] [PubMed]

P. T. Whiteside, A. K. King, J. A. Davies, K. L. Reid, M. Towrie, and P. Matousek, “Photoelectron spectroscopy of S1 toluene: II. Intramolecular dynamics of selected vibrational levels in S1 toluene studied by nanosecond and picosecond time-resolved photoelectron spectroscopies,” J. Chem. Phys. 123(20), 204317 (2005).
[CrossRef] [PubMed]

K. G. Spears and S. A. Rice, “Study of the Lifetimes of Individual Vibronic States of the Isolated Benzene Molecule,” J. Chem. Phys. 55(12), 5561–5581 (1971).
[CrossRef]

J. Phys. Chem. (2)

E. Riedle, H. J. Neusser, and E. W. Schlag, “Sub-Doppler high-resolution spectra of benzene: anomalous results in the “channel three” region,” J. Phys. Chem. 86(25), 4847–4850 (1982).
[CrossRef]

C. E. Otis, J. L. Knee, and P. M. Johnson, “Nonradiative processes in the channel three region of the S1 state of ultracold benzene,” J. Phys. Chem. 87(12), 2232–2239 (1983).
[CrossRef]

J. Phys. Chem. A (2)

M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008).
[CrossRef] [PubMed]

P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A 105(23), 5613–5617 (2001).
[CrossRef]

Nature (1)

A. Stolow, V. Blanchet, M. Z. Zgierski, and T. Seideman, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401(6748), 52–54 (1999).
[CrossRef]

Opt. Express (1)

Phys. Rev. (1)

C. N. Yang, “On the angular distribution in nuclear reactions and coincidence measurements,” Phys. Rev. 74(7), 764–772 (1948).
[CrossRef]

Phys. Rev. Lett. (1)

A. M. Rijs, M. H. M. Janssen, E. T. Chrysostom, and C. C. Hayden, “Femtosecond coincidence imaging of multichannel multiphoton dynamics,” Phys. Rev. Lett. 92(12), 123002 (2004).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69(6), 1897–2003 (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002).
[CrossRef]

Science (4)

A. H. Zewail, “Laser Femtochemistry,” Science 242(4886), 1645–1653 (1988).
[CrossRef] [PubMed]

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

D. H. Paik, I.-R. Lee, D.-S. Yang, J. S. Baskin, and A. H. Zewail, “Electrons in finite-sized water cavities: hydration dynamics observed in real time,” Science 306(5696), 672–675 (2004).
[CrossRef] [PubMed]

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Time-resolved total ion signals of parent ion as a function of delay time between the pump pulse at 400 nm and the probe pulse at 800 nm. The circles are the experimental results, and solid lines are the fitting results.

Fig. 2
Fig. 2

A series of time-resolved BASEX-inverted photoelectron images of o-xylene observed using a pump laser wavelength of 400 nm and a probe wavelength of 800 nm. The linear polarizations of the pump and probe lasers are aligned vertical in the plane of the figure.

Fig. 3
Fig. 3

Photoelectron kinetic energy distributions extracted from the images of Fig. 2. The arrows indicate the photoelectron energy (0.74 eV and 2.29 eV) expected for ionization to the zero vibrational level of the cation indicated by D0 and D0′, by two-photon and three-photon absorption of probe pulse, respectively.

Fig. 4
Fig. 4

Time evolution of photoelectron signals only from the third band and total photoelectron signals (for reference) with the pump pulse at 400 nm and the probe pulse at 800 nm.

Fig. 5
Fig. 5

Time-resolved PKE distributions with two energies of the probe pulse (800 nm) and the same energy of the pump pulse (400 nm).

Fig. 6
Fig. 6

Energy excitation scheme of the ground, excited and ionic states of o-xylene. The pump laser (400 nm) prepares the S2 state. Due to ultrafast internal conversion, this state converts to the lower-lying state S1 with higher vibrational energy. Here, 1st, 2nd and 3rd are corresponding to the first, second and third bands marked on Fig. 3.

Fig. 7
Fig. 7

Polar plots of PADs with distributions of PKE of 0-0.74 eV observed for different time delays of pump (400 nm) and probe pulse (800 nm). The linear polarizations of the pump and probe lasers are aligned vertical in the plane of the figure.

Fig. 8
Fig. 8

Time-resolved signals of parent ion as a function of the pump-probe delay observed using a pump laser wavelength of 267 nm and a probe wavelength of 400 nm. The circles are the experimental results, and solid lines are the results of a fit < 50 fs for the initial delay and ~12.7 ns for the second delay.

Fig. 9
Fig. 9

A series of time-resolved BASEX -inverted photoelectron images of o-xylene observed using a pump laser wavelength of 267 nm and a probe wavelength of 400 nm. The linear polarizations of the pump and probe lasers are aligned vertical in the plane of the figure.

Fig. 10
Fig. 10

Photoelectron kinetic energy distributions extracted from the images of Fig. 9. The arrow indicate the photoelectron energy (D0′′ = 2.30 eV) expected for ionization to the zero vibrational level.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( θ ; t ) = σ ( t ) [ 1 + β 2 ( t ) P 2 ( cos θ ) + β 4 ( t ) P 4 ( cos θ ) + β 6 ( t ) P 6 ( cos θ ) ] ,

Metrics