Abstract

Experimental results on passive mode-locking of a Nd:YVO4 laser using intracavity frequency doubling in periodically poled KTP (PPKTP) crystal are reported. Both, negative cascaded χ(2) lensing and frequency doubling nonlinear mirror (FDNLM) are exploited for the laser mode-locking. The FDNLM based on intensity dependent reflection in the laser cavity ensures self-starting and self-sustaining mode-locking while the cascaded χ(2) lens process contributes to substantial pulse shortening. This hybrid technique enables generation of stable trains of pulses at high-average output power with several picoseconds pulse width. The pulse repetition rate of the laser is 117 MHz with average output power ranging from 0.5 to 3.1 W and pulse duration from 2.9 to 5.2 ps.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [CrossRef] [PubMed]
  2. G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, and V. Magni, “Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20(7), 746–748 (1995).
    [CrossRef] [PubMed]
  3. A. Agnesi, A. Lucca, G. Reali, and A. Tomaselli, “All-solid-state high-repetition-rate optical source tunable in wavelength and in pulse duration,” J. Opt. Soc. Am. B 18(3), 286–290 (2001).
    [CrossRef]
  4. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [CrossRef]
  5. J. Kleinbauer, R. Knappe, and R. Wallenstein, „Ultrashort pulse lasers and amplifiers based on Nd:YVO4 and Yb:YAG bulk crystals,“ in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner, H. Lubatschowski (Eds.), Topics in Applied Physics, Vol. 96, Springer (Berlin, 2004), pp.17-33.
  6. T. Graf, A. I. Ferguson, E. Bente, D. Burns, and M. D. Dawson, “Multi-Watt Nd:YVO4 laser, mode locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar,” Opt. Commun. 159(1-3), 84–87 (1999).
    [CrossRef]
  7. D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davies, and S. W. Bland, “High-average-power (> 20-W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors,” J. Opt. Soc. Am. B 17(6), 919–926 (2000).
    [CrossRef]
  8. Y. F. Chen, S. W. Tsai, Y. P. Lan, S. C. Wang, and K. F. Huang, “Diode-end-pumped passively mode-locked high-power Nd:YVO4 laser with a relaxed saturable Bragg reflector,” Opt. Lett. 26(4), 199–201 (2001).
    [CrossRef]
  9. G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).
  10. L. McDonagh, R. Wallenstein, and A. Nebel, “111 W, 110 MHz repetition-rate, passively mode-locked TEM00 Nd:YVO4 master oscillator power amplifier pumped at 888 nm,” Opt. Lett. 32(10), 1259–1261 (2007).
    [CrossRef] [PubMed]
  11. Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periodically-poled KTP,” Appl. Phys. B 72, 395–397 (2001).
  12. A. Agnesi, C. Pennacchio, G. C. Reali, and V. Kubecek, “High-power diode-pumped picosecond Nd(3+):YVO(4) laser,” Opt. Lett. 22(21), 1645–1647 (1997).
    [CrossRef]
  13. I. C. Buchvarov and S. M. Saltiel, “Passive feedback control of actively mode-locked pulsed Nd:YAG laser,” Proc. SPIE 1842, 124–129 (1992).
    [CrossRef]
  14. I. C. Buchvarov, K. A. Stankov, and S. M. Saltiel, “Pulse shortening in an actively mode-locked laser with a frequency-doubling nonlinear mirror,” Opt. Commun. 83(3-4), 241–245 (1991).
    [CrossRef]
  15. K. A. Stankov and J. Jethwa, “J., “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
    [CrossRef]
  16. I. Buchvarov, G. Christov, and S. Saltiel, “Transient behavior of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
    [CrossRef]
  17. S. J. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13(14), 5270–5278 (2005).
    [CrossRef] [PubMed]
  18. A. Agnesi, A. Guandalini, A. Tomaselli, E. Sani, A. Toncelli, and M. Tonelli, “Diode-pumped passively mode-locked and passively stabilized Nd3+:BaY2F8 laser,” Opt. Lett. 29(14), 1638–1640 (2004).
    [CrossRef] [PubMed]
  19. P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun. 173(1-6), 315–321 (2000).
    [CrossRef]
  20. K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45(3), 191–195 (1988).
    [CrossRef]
  21. I. Ch. Buchvarov, P. N. Tzankov, V. Stoev, K. Demerdjiev, and D. Shumov, “Generation of high power picosecond pulses by passively mode-locked Nd:YAG laser using frequency doubling mirror,” in Advanced Photonics with Second-Order Optically Nonlinear Processes: 61 (NATO Science Series. Partnership Sub-Series 3, High Technology), A.D. Boardman, L. Pavlov, and S. Tanev (eds), Kluwer Academic Publishers, Dordrecht, Netherlands, (1998), pp. 197–200.
  22. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41(24), 5040–5044 (2002).
    [CrossRef] [PubMed]
  23. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [CrossRef]
  24. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28(5), 367–369 (2003).
    [CrossRef] [PubMed]

2007 (1)

2005 (1)

2004 (1)

2003 (2)

2002 (1)

2001 (3)

2000 (3)

P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun. 173(1-6), 315–321 (2000).
[CrossRef]

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).

D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davies, and S. W. Bland, “High-average-power (> 20-W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors,” J. Opt. Soc. Am. B 17(6), 919–926 (2000).
[CrossRef]

1999 (1)

T. Graf, A. I. Ferguson, E. Bente, D. Burns, and M. D. Dawson, “Multi-Watt Nd:YVO4 laser, mode locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar,” Opt. Commun. 159(1-3), 84–87 (1999).
[CrossRef]

1997 (1)

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

1995 (1)

1994 (1)

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behavior of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[CrossRef]

1992 (1)

I. C. Buchvarov and S. M. Saltiel, “Passive feedback control of actively mode-locked pulsed Nd:YAG laser,” Proc. SPIE 1842, 124–129 (1992).
[CrossRef]

1991 (1)

I. C. Buchvarov, K. A. Stankov, and S. M. Saltiel, “Pulse shortening in an actively mode-locked laser with a frequency-doubling nonlinear mirror,” Opt. Commun. 83(3-4), 241–245 (1991).
[CrossRef]

1988 (2)

K. A. Stankov and J. Jethwa, “J., “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
[CrossRef]

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45(3), 191–195 (1988).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Agnesi, A.

Aschwanden, A.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Bente, E.

D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davies, and S. W. Bland, “High-average-power (> 20-W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors,” J. Opt. Soc. Am. B 17(6), 919–926 (2000).
[CrossRef]

T. Graf, A. I. Ferguson, E. Bente, D. Burns, and M. D. Dawson, “Multi-Watt Nd:YVO4 laser, mode locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar,” Opt. Commun. 159(1-3), 84–87 (1999).
[CrossRef]

Bland, S. W.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Brunner, F.

Buchvarov, I.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behavior of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[CrossRef]

Buchvarov, I. C.

I. C. Buchvarov and S. M. Saltiel, “Passive feedback control of actively mode-locked pulsed Nd:YAG laser,” Proc. SPIE 1842, 124–129 (1992).
[CrossRef]

I. C. Buchvarov, K. A. Stankov, and S. M. Saltiel, “Pulse shortening in an actively mode-locked laser with a frequency-doubling nonlinear mirror,” Opt. Commun. 83(3-4), 241–245 (1991).
[CrossRef]

Burns, D.

D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davies, and S. W. Bland, “High-average-power (> 20-W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors,” J. Opt. Soc. Am. B 17(6), 919–926 (2000).
[CrossRef]

T. Graf, A. I. Ferguson, E. Bente, D. Burns, and M. D. Dawson, “Multi-Watt Nd:YVO4 laser, mode locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar,” Opt. Commun. 159(1-3), 84–87 (1999).
[CrossRef]

Cerullo, G.

Chen, Y. F.

Y. F. Chen, S. W. Tsai, Y. P. Lan, S. C. Wang, and K. F. Huang, “Diode-end-pumped passively mode-locked high-power Nd:YVO4 laser with a relaxed saturable Bragg reflector,” Opt. Lett. 26(4), 199–201 (2001).
[CrossRef]

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periodically-poled KTP,” Appl. Phys. B 72, 395–397 (2001).

Christov, G.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behavior of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[CrossRef]

Davies, J. I.

Dawson, M. D.

D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davies, and S. W. Bland, “High-average-power (> 20-W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors,” J. Opt. Soc. Am. B 17(6), 919–926 (2000).
[CrossRef]

T. Graf, A. I. Ferguson, E. Bente, D. Burns, and M. D. Dawson, “Multi-Watt Nd:YVO4 laser, mode locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar,” Opt. Commun. 159(1-3), 84–87 (1999).
[CrossRef]

De Silvestri, S.

Ferguson, A. I.

D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davies, and S. W. Bland, “High-average-power (> 20-W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors,” J. Opt. Soc. Am. B 17(6), 919–926 (2000).
[CrossRef]

T. Graf, A. I. Ferguson, E. Bente, D. Burns, and M. D. Dawson, “Multi-Watt Nd:YVO4 laser, mode locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar,” Opt. Commun. 159(1-3), 84–87 (1999).
[CrossRef]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Graf, T.

T. Graf, A. I. Ferguson, E. Bente, D. Burns, and M. D. Dawson, “Multi-Watt Nd:YVO4 laser, mode locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar,” Opt. Commun. 159(1-3), 84–87 (1999).
[CrossRef]

Guandalini, A.

Häring, R.

Hetterich, M.

Holmgren, S. J.

Hönninger, C.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28(5), 367–369 (2003).
[CrossRef] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Huang, J. Y.

P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun. 173(1-6), 315–321 (2000).
[CrossRef]

Huang, K. F.

Innerhofer, E.

Jethwa, J.

K. A. Stankov and J. Jethwa, “J., “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
[CrossRef]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Kato, K.

Keller, U.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28(5), 367–369 (2003).
[CrossRef] [PubMed]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Kubecek, V.

Kumkar, M.

Lan, Y. P.

Laurell, F.

Lucca, A.

Magni, V.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

McDonagh, L.

Monguzzi, A.

Moser, M.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).

Nebel, A.

Paschotta, R.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28(5), 367–369 (2003).
[CrossRef] [PubMed]

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).

Pasiskevicius, V.

Pennacchio, C.

Reali, G.

Reali, G. C.

Saltiel, S.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behavior of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[CrossRef]

Saltiel, S. M.

I. C. Buchvarov and S. M. Saltiel, “Passive feedback control of actively mode-locked pulsed Nd:YAG laser,” Proc. SPIE 1842, 124–129 (1992).
[CrossRef]

I. C. Buchvarov, K. A. Stankov, and S. M. Saltiel, “Pulse shortening in an actively mode-locked laser with a frequency-doubling nonlinear mirror,” Opt. Commun. 83(3-4), 241–245 (1991).
[CrossRef]

Sani, E.

Segala, D.

Spühler, G. J.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).

Stankov, K. A.

I. C. Buchvarov, K. A. Stankov, and S. M. Saltiel, “Pulse shortening in an actively mode-locked laser with a frequency-doubling nonlinear mirror,” Opt. Commun. 83(3-4), 241–245 (1991).
[CrossRef]

K. A. Stankov and J. Jethwa, “J., “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
[CrossRef]

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45(3), 191–195 (1988).
[CrossRef]

Südmeyer, T.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28(5), 367–369 (2003).
[CrossRef] [PubMed]

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).

Takaoka, E.

Tomaselli, A.

Toncelli, A.

Tonelli, M.

Tsai, S. W.

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periodically-poled KTP,” Appl. Phys. B 72, 395–397 (2001).

Y. F. Chen, S. W. Tsai, Y. P. Lan, S. C. Wang, and K. F. Huang, “Diode-end-pumped passively mode-locked high-power Nd:YVO4 laser with a relaxed saturable Bragg reflector,” Opt. Lett. 26(4), 199–201 (2001).
[CrossRef]

Wallenstein, R.

Wang, S. C.

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periodically-poled KTP,” Appl. Phys. B 72, 395–397 (2001).

Y. F. Chen, S. W. Tsai, Y. P. Lan, S. C. Wang, and K. F. Huang, “Diode-end-pumped passively mode-locked high-power Nd:YVO4 laser with a relaxed saturable Bragg reflector,” Opt. Lett. 26(4), 199–201 (2001).
[CrossRef]

Weingarten, K. J.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Yang, P. K.

P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun. 173(1-6), 315–321 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45(3), 191–195 (1988).
[CrossRef]

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periodically-poled KTP,” Appl. Phys. B 72, 395–397 (2001).

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

Opt. Commun. (5)

T. Graf, A. I. Ferguson, E. Bente, D. Burns, and M. D. Dawson, “Multi-Watt Nd:YVO4 laser, mode locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar,” Opt. Commun. 159(1-3), 84–87 (1999).
[CrossRef]

I. C. Buchvarov, K. A. Stankov, and S. M. Saltiel, “Pulse shortening in an actively mode-locked laser with a frequency-doubling nonlinear mirror,” Opt. Commun. 83(3-4), 241–245 (1991).
[CrossRef]

K. A. Stankov and J. Jethwa, “J., “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
[CrossRef]

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behavior of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[CrossRef]

P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun. 173(1-6), 315–321 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Proc. SPIE (1)

I. C. Buchvarov and S. M. Saltiel, “Passive feedback control of actively mode-locked pulsed Nd:YAG laser,” Proc. SPIE 1842, 124–129 (1992).
[CrossRef]

Other (2)

J. Kleinbauer, R. Knappe, and R. Wallenstein, „Ultrashort pulse lasers and amplifiers based on Nd:YVO4 and Yb:YAG bulk crystals,“ in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner, H. Lubatschowski (Eds.), Topics in Applied Physics, Vol. 96, Springer (Berlin, 2004), pp.17-33.

I. Ch. Buchvarov, P. N. Tzankov, V. Stoev, K. Demerdjiev, and D. Shumov, “Generation of high power picosecond pulses by passively mode-locked Nd:YAG laser using frequency doubling mirror,” in Advanced Photonics with Second-Order Optically Nonlinear Processes: 61 (NATO Science Series. Partnership Sub-Series 3, High Technology), A.D. Boardman, L. Pavlov, and S. Tanev (eds), Kluwer Academic Publishers, Dordrecht, Netherlands, (1998), pp. 197–200.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the laser cavity: F1, F2 – pump objective; AE - Nd:YVO4 active element; M, M1, M2 - highly reflecting mirrors at the fundamental wavelength, F3 - focusing lens, NLC - PPKTP nonlinear crystal, OC - output coupler.

Fig. 2
Fig. 2

Schematic of the FDNLM: NLC, nonlinear SHG crystal; DM, dichroic mirror.

Fig. 3
Fig. 3

Analytically calculated normalized FDNLM reflection as a function of the SHG efficiency for perfect phase matching and different Rω, (a) Δφin = Δφout ± (2m + 1)π; (b) Δφin = Δφout ± 2mπ, m = 0,1,2…

Fig. 4
Fig. 4

Calculated pulse shortening ratio τout/τin (solid line), normalized nonlinear reflectivity RNL/Rω (dotted line), and nonlinear phase shift φ1 of the fundamental wave (dashed line), as functions of Δφin.

Fig. 5
Fig. 5

Normalized single-pass second harmonic (SH) intensity as a function of the crystal holder temperature (T) measured in the continuous-wave regime with OC4. Similar dependence is observed for all DMs.

Fig. 6
Fig. 6

Laser output power as a function of incident pump power using OC3.

Fig. 7
Fig. 7

Autocorrelation functions (black curves) and fits assuming sech2 pulse shape (red curves) using two dichroic output couplers with high reflectivity at the second harmonic, OC3 (a) and OC1 (b). The autocorrelation is measured by rotating-mirrors autocorrelator using non-collinear SHG.

Fig. 8
Fig. 8

Pulse duration (symbols) of the mode-locked Nd:YVO4 laser at maximum output power with OC1 (see Table 1), measured in dependence on the NLC holder temperature T. The curve is just a guide to the eye.

Tables (1)

Tables Icon

Table 1 Summary of the laser performance with the four different dichroic output couplers.

Metrics