Abstract

We find that the angle between elementary lattice vectors obviously affects the bandwidth and dispersion of slow light in photonic crystal line-defect waveguides. When the fluctuation of group index is strictly limited in a ±1% range, the oblique lattice structures with the angle between elementary lattice vectors slightly larger than 60° have broader available bandwidth of flat band slow light than triangular lattice structures. For example, for the angle 66°, there are increases of the available bandwidth from 20% to 68% for several different structures. For the same angle and a ±10% variation in group velocity, when group indices are nearly constants of 30, 48.5, 80 and 130, their corresponding bandwidths of flat band reach 20 nm, 11.8 nm, 7.3 nm and 3.9 nm around 1550 nm, respectively. The increasing of bandwidth is related to the shift of the anticrossing point towards smaller wave numbers.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14(6), 2317–2322 (2006).
    [CrossRef] [PubMed]
  2. S.-M. Ma, H. Xu, and B. S. Ham, “Electromagnetically-induced transparency and slow light in GaAs/AlGaAs multiple quantum wells in a transient regime,” Opt. Express 17(17), 14902–14908 (2009).
    [CrossRef] [PubMed]
  3. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
    [CrossRef] [PubMed]
  4. M. D. Lukin and A. Imamoglu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84(7), 1419–1422 (2000).
    [CrossRef] [PubMed]
  5. K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
    [CrossRef]
  6. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [CrossRef]
  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reductionto 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  8. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
    [CrossRef] [PubMed]
  9. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [CrossRef] [PubMed]
  10. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  11. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [CrossRef] [PubMed]
  12. A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85(21), 4866–4868 (2004).
    [CrossRef]
  13. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007).
    [CrossRef] [PubMed]
  14. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15(13), 8323–8328 (2007).
    [CrossRef] [PubMed]
  15. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006).
    [CrossRef] [PubMed]
  16. A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68(23), 233102 (2003).
    [CrossRef]
  17. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
    [CrossRef] [PubMed]
  18. D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Lett. 15, 5264–5270 (2007).
  19. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
    [CrossRef] [PubMed]
  20. S. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [CrossRef] [PubMed]
  21. Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides,” Appl. Phys. Lett. 89(13), 131101 (2006).
    [CrossRef]
  22. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14(4), 1658–1672 (2006).
    [CrossRef] [PubMed]

2009

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

S.-M. Ma, H. Xu, and B. S. Ham, “Electromagnetically-induced transparency and slow light in GaAs/AlGaAs multiple quantum wells in a transient regime,” Opt. Express 17(17), 14902–14908 (2009).
[CrossRef] [PubMed]

2008

2007

2006

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14(4), 1658–1672 (2006).
[CrossRef] [PubMed]

Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14(6), 2317–2322 (2006).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006).
[CrossRef] [PubMed]

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides,” Appl. Phys. Lett. 89(13), 131101 (2006).
[CrossRef]

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
[CrossRef]

2005

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

2004

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[CrossRef] [PubMed]

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85(21), 4866–4868 (2004).
[CrossRef]

2003

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68(23), 233102 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

2001

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

S. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[CrossRef] [PubMed]

2000

M. D. Lukin and A. Imamoglu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84(7), 1419–1422 (2000).
[CrossRef] [PubMed]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reductionto 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Adachi, J.

Adibi, A.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68(23), 233102 (2003).
[CrossRef]

Ahopelto, J.

Asakawa, K.

Baba, T.

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
[CrossRef] [PubMed]

D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Lett. 15, 5264–5270 (2007).

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reductionto 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Borel, P. I.

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reductionto 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Eich, M.

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85(21), 4866–4868 (2004).
[CrossRef]

Engelen, R. J. P.

Fage-Pedersen, J.

Fan, S.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[CrossRef] [PubMed]

Foster, M.

Frandsen, L. H.

Gaeta, A.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Gomez-Iglesias, A.

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Ham, B. S.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reductionto 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hasama, T.

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides,” Appl. Phys. Lett. 89(13), 131101 (2006).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reductionto 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Ide, T.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
[CrossRef]

Ikeda, N.

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14(4), 1658–1672 (2006).
[CrossRef] [PubMed]

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides,” Appl. Phys. Lett. 89(13), 131101 (2006).
[CrossRef]

Imamoglu, A.

M. D. Lukin and A. Imamoglu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84(7), 1419–1422 (2000).
[CrossRef] [PubMed]

Ishikawa, H.

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides,” Appl. Phys. Lett. 89(13), 131101 (2006).
[CrossRef]

Jafarpour, A.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68(23), 233102 (2003).
[CrossRef]

Joannopoulos, J. D.

Johnson, S.

Kawaaski, T.

Kawashima, H.

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides,” Appl. Phys. Lett. 89(13), 131101 (2006).
[CrossRef]

Kise, T.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
[CrossRef]

Kiyota, K.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
[CrossRef]

Korterik, J. P.

Krauss, T. F.

Kubo, S.

D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Lett. 15, 5264–5270 (2007).

Kuipers, L.

Kuwatsuka, H.

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides,” Appl. Phys. Lett. 89(13), 131101 (2006).
[CrossRef]

Lavrinenko, A. V.

Lee, R. K.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68(23), 233102 (2003).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Li, J.

Lipsanen, H.

Lipson, M.

Lukin, M. D.

M. D. Lukin and A. Imamoglu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84(7), 1419–1422 (2000).
[CrossRef] [PubMed]

Ma, S.-M.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Michaeli, A.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Mori, D.

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
[CrossRef] [PubMed]

D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Lett. 15, 5264–5270 (2007).

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Mulot, M.

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

Okawachi, Y.

Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14(6), 2317–2322 (2006).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Petrov, A. Yu.

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85(21), 4866–4868 (2004).
[CrossRef]

Salib, M.

Sasaki, H.

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
[CrossRef] [PubMed]

D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Lett. 15, 5264–5270 (2007).

Säynätjoki, A.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Settle, M. D.

Sharping, J.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Sugimoto, Y.

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14(4), 1658–1672 (2006).
[CrossRef] [PubMed]

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides,” Appl. Phys. Lett. 89(13), 131101 (2006).
[CrossRef]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[CrossRef] [PubMed]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Tanaka, Y.

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides,” Appl. Phys. Lett. 89(13), 131101 (2006).
[CrossRef]

van Hulst, N. F.

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[CrossRef] [PubMed]

Watanabe, Y.

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

Xu, H.

Xu, Q.

Xu, Y.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68(23), 233102 (2003).
[CrossRef]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Yokouchi, N.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
[CrossRef]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
[CrossRef]

Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides,” Appl. Phys. Lett. 89(13), 131101 (2006).
[CrossRef]

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85(21), 4866–4868 (2004).
[CrossRef]

Nat. Photonics

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reductionto 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express

S. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[CrossRef] [PubMed]

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14(4), 1658–1672 (2006).
[CrossRef] [PubMed]

Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14(6), 2317–2322 (2006).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006).
[CrossRef] [PubMed]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007).
[CrossRef] [PubMed]

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15(13), 8323–8328 (2007).
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
[CrossRef] [PubMed]

S.-M. Ma, H. Xu, and B. S. Ham, “Electromagnetically-induced transparency and slow light in GaAs/AlGaAs multiple quantum wells in a transient regime,” Opt. Express 17(17), 14902–14908 (2009).
[CrossRef] [PubMed]

Opt. Lett.

D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Lett. 15, 5264–5270 (2007).

Phys. Rev. B

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68(23), 233102 (2003).
[CrossRef]

Phys. Rev. Lett.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[CrossRef] [PubMed]

M. D. Lukin and A. Imamoglu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84(7), 1419–1422 (2000).
[CrossRef] [PubMed]

Science

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the PC waveguide. The basic structure consists of a W0.85 waveguide in an oblique lattice. The waveguide width is W 0.85 = 1.7 a cos ( θ / 2 ) . Based on the basic structure, the first two rows of air-hole are shifted horizontally with distances of d1 and d2 respectively; and we define d1 and d2 to be positive if the air-holes are shifted along the directions denoted by the blue arrows.

Fig. 2
Fig. 2

(a) Dispersion curves with different parameter of d1 and d2. Λ= 2asin(θ/2), is the period length along the waveguide. (b) Group index correspond to curves in map (a). Δω present the bandwidth of flat band.

Fig. 3
Fig. 3

Group index for θ = 66° and θ = 60°. The curves on the left of figure correspond to θ = 66°, while the curves on the right correspond to θ = 60°.

Fig. 4
Fig. 4

(a) The dispersion curves of PC waveguides with different ABELVs. For θ = 56°, The slow-light-zone is marked by the blue line and arrows. The crossing red dash lines denote the wave number of anticrossing point A. For all calculated θ, d1 = 0, d2 = 0. At the first Brillouin zone edge of each dispersion curve, the right endpoints of dispersion curves with different θ are denoted by dots with different color respectively. (b) The group velocity curves corresponding to (a). In Fig. 4, other parameters used are as follows: r = 0.32a, h = 0.5328a, n = 3.5, effective refractive indices are 2.7, 2.746, 2.775 and 2.8 for θ = 70°, 66°, 60°, 56°, respectively.

Fig. 5
Fig. 5

The group velocity curves of two waveguides with different θ. For θ = 60°, d1 = 0.152, d2 = 0.06; while for θ = 66°, d1 = 0.128a, d2 = −0.002a. Other parameters used are as follows: r = 0.32a, h = 0.5328a, n = 3.5, effective refractive indices are 2.746, 2.775 for θ = 66° and 60° respectively.

Metrics