E. Eremina, “Light scattering by an erythrocyte based on Discrete Sources Method: shape and refractive index influence,” J. Quant. Spectrosc. Radiat. Transf. 110(14-16), 1526–1534 (2009).

[CrossRef]

Y. Okada, I. Mann, I. Sano, and S. Mukai, “Acceleration of the iterative solver in the discrete dipole approximation: Application to the orientation variation of irregularly shaped particles,” J. Quant. Spectrosc. Radiat. Transf. 109(8), 1461–1473 (2008).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” JQSRT 106, 558–589 (2007).

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).

[CrossRef]

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15(26), 17902–17911 (2007).

[CrossRef]
[PubMed]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. Theoretical analysis,” J. Opt. Soc. Am. A 23(10), 2578–2591 (2006).

[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23(10), 2592–2601 (2006).

[CrossRef]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 444–456 (2006).

[CrossRef]

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape models for erythrocyte: Light scattering analysis based on the discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 3–10 (2006).

[CrossRef]

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52(1), 13–18 (2005).

[CrossRef]
[PubMed]

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” Opt. Commun. 244(1-6), 15–23 (2005).

[CrossRef]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).

[CrossRef]
[PubMed]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).

[CrossRef]
[PubMed]

K. A. Semyanov, P. A. Tarasov, J. T. Soini, A. K. Petrov, and V. P. Maltsev, “Calibration-free method to determine the size and hemoglobin concentration of individual red blood cells from light scattering,” Appl. Opt. 39(31), 5884–5889 (2000).

[CrossRef]

Yu. Eremin, “The method of discrete sources in electromagnetic scattering by axially symmetric structures,” J. Commun. Technol. Electron. 45(Suppl.2), 269–280 (2000).

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38(1), 230–235 (1999).

[CrossRef]

S. V. Tsinopoulos and D. Polyzos, “Scattering of He-Ne laser light by an average-sized red blood cell,” Appl. Opt. 38(25), 5499–5510 (1999).

[CrossRef]

P. Mazeron, S. Muller, and H. El Azouzi, “Deformation of erythrocytes under shear: a small-angle light scattering study,” Biorheology 34(2), 99–110 (1997).

[CrossRef]
[PubMed]

Y. C. Fung, W. C. Tsang, and P. Patitucci, “High-resolution data on the geometry of red blood cells,” Biorheology 18(3-6), 369–385 (1981).

[PubMed]

R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, “Strain energy function of red blood cell membranes,” Biophys. J. 13(3), 245–264 (1973).

[CrossRef]
[PubMed]

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52(1), 13–18 (2005).

[CrossRef]
[PubMed]

A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-Matrix Computations of Light Scattering by Red Blood Cells,” Appl. Opt. 37(13), 2735–2748 (1998).

[CrossRef]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).

[CrossRef]
[PubMed]

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38(1), 230–235 (1999).

[CrossRef]

R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, “Strain energy function of red blood cell membranes,” Biophys. J. 13(3), 245–264 (1973).

[CrossRef]
[PubMed]

P. Mazeron, S. Muller, and H. El Azouzi, “Deformation of erythrocytes under shear: a small-angle light scattering study,” Biorheology 34(2), 99–110 (1997).

[CrossRef]
[PubMed]

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape models for erythrocyte: Light scattering analysis based on the discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 3–10 (2006).

[CrossRef]

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” Opt. Commun. 244(1-6), 15–23 (2005).

[CrossRef]

Yu. Eremin, “The method of discrete sources in electromagnetic scattering by axially symmetric structures,” J. Commun. Technol. Electron. 45(Suppl.2), 269–280 (2000).

E. Eremina, “Light scattering by an erythrocyte based on Discrete Sources Method: shape and refractive index influence,” J. Quant. Spectrosc. Radiat. Transf. 110(14-16), 1526–1534 (2009).

[CrossRef]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 444–456 (2006).

[CrossRef]

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape models for erythrocyte: Light scattering analysis based on the discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 3–10 (2006).

[CrossRef]

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” Opt. Commun. 244(1-6), 15–23 (2005).

[CrossRef]

Y. C. Fung, W. C. Tsang, and P. Patitucci, “High-resolution data on the geometry of red blood cells,” Biorheology 18(3-6), 369–385 (1981).

[PubMed]

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52(1), 13–18 (2005).

[CrossRef]
[PubMed]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 444–456 (2006).

[CrossRef]

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape models for erythrocyte: Light scattering analysis based on the discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 3–10 (2006).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” JQSRT 106, 558–589 (2007).

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).

[CrossRef]

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15(26), 17902–17911 (2007).

[CrossRef]
[PubMed]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. Theoretical analysis,” J. Opt. Soc. Am. A 23(10), 2578–2591 (2006).

[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23(10), 2592–2601 (2006).

[CrossRef]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).

[CrossRef]
[PubMed]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).

[CrossRef]
[PubMed]

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52(1), 13–18 (2005).

[CrossRef]
[PubMed]

A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-Matrix Computations of Light Scattering by Red Blood Cells,” Appl. Opt. 37(13), 2735–2748 (1998).

[CrossRef]

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15(26), 17902–17911 (2007).

[CrossRef]
[PubMed]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).

[CrossRef]
[PubMed]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).

[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23(10), 2592–2601 (2006).

[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. Theoretical analysis,” J. Opt. Soc. Am. A 23(10), 2578–2591 (2006).

[CrossRef]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).

[CrossRef]
[PubMed]

K. A. Semyanov, P. A. Tarasov, J. T. Soini, A. K. Petrov, and V. P. Maltsev, “Calibration-free method to determine the size and hemoglobin concentration of individual red blood cells from light scattering,” Appl. Opt. 39(31), 5884–5889 (2000).

[CrossRef]

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38(1), 230–235 (1999).

[CrossRef]

Y. Okada, I. Mann, I. Sano, and S. Mukai, “Acceleration of the iterative solver in the discrete dipole approximation: Application to the orientation variation of irregularly shaped particles,” J. Quant. Spectrosc. Radiat. Transf. 109(8), 1461–1473 (2008).

[CrossRef]

P. Mazeron, S. Muller, and H. El Azouzi, “Deformation of erythrocytes under shear: a small-angle light scattering study,” Biorheology 34(2), 99–110 (1997).

[CrossRef]
[PubMed]

Y. Okada, I. Mann, I. Sano, and S. Mukai, “Acceleration of the iterative solver in the discrete dipole approximation: Application to the orientation variation of irregularly shaped particles,” J. Quant. Spectrosc. Radiat. Transf. 109(8), 1461–1473 (2008).

[CrossRef]

P. Mazeron, S. Muller, and H. El Azouzi, “Deformation of erythrocytes under shear: a small-angle light scattering study,” Biorheology 34(2), 99–110 (1997).

[CrossRef]
[PubMed]

Y. Okada, I. Mann, I. Sano, and S. Mukai, “Acceleration of the iterative solver in the discrete dipole approximation: Application to the orientation variation of irregularly shaped particles,” J. Quant. Spectrosc. Radiat. Transf. 109(8), 1461–1473 (2008).

[CrossRef]

Y. C. Fung, W. C. Tsang, and P. Patitucci, “High-resolution data on the geometry of red blood cells,” Biorheology 18(3-6), 369–385 (1981).

[PubMed]

Y. Okada, I. Mann, I. Sano, and S. Mukai, “Acceleration of the iterative solver in the discrete dipole approximation: Application to the orientation variation of irregularly shaped particles,” J. Quant. Spectrosc. Radiat. Transf. 109(8), 1461–1473 (2008).

[CrossRef]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 444–456 (2006).

[CrossRef]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).

[CrossRef]
[PubMed]

K. A. Semyanov, P. A. Tarasov, J. T. Soini, A. K. Petrov, and V. P. Maltsev, “Calibration-free method to determine the size and hemoglobin concentration of individual red blood cells from light scattering,” Appl. Opt. 39(31), 5884–5889 (2000).

[CrossRef]

R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, “Strain energy function of red blood cell membranes,” Biophys. J. 13(3), 245–264 (1973).

[CrossRef]
[PubMed]

K. A. Semyanov, P. A. Tarasov, J. T. Soini, A. K. Petrov, and V. P. Maltsev, “Calibration-free method to determine the size and hemoglobin concentration of individual red blood cells from light scattering,” Appl. Opt. 39(31), 5884–5889 (2000).

[CrossRef]

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38(1), 230–235 (1999).

[CrossRef]

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52(1), 13–18 (2005).

[CrossRef]
[PubMed]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).

[CrossRef]
[PubMed]

K. A. Semyanov, P. A. Tarasov, J. T. Soini, A. K. Petrov, and V. P. Maltsev, “Calibration-free method to determine the size and hemoglobin concentration of individual red blood cells from light scattering,” Appl. Opt. 39(31), 5884–5889 (2000).

[CrossRef]

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38(1), 230–235 (1999).

[CrossRef]

R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, “Strain energy function of red blood cell membranes,” Biophys. J. 13(3), 245–264 (1973).

[CrossRef]
[PubMed]

Y. C. Fung, W. C. Tsang, and P. Patitucci, “High-resolution data on the geometry of red blood cells,” Biorheology 18(3-6), 369–385 (1981).

[PubMed]

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape models for erythrocyte: Light scattering analysis based on the discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 3–10 (2006).

[CrossRef]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 444–456 (2006).

[CrossRef]

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” Opt. Commun. 244(1-6), 15–23 (2005).

[CrossRef]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).

[CrossRef]
[PubMed]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).

[CrossRef]

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15(26), 17902–17911 (2007).

[CrossRef]
[PubMed]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” JQSRT 106, 558–589 (2007).

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. Theoretical analysis,” J. Opt. Soc. Am. A 23(10), 2578–2591 (2006).

[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23(10), 2592–2601 (2006).

[CrossRef]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).

[CrossRef]
[PubMed]

R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, “Strain energy function of red blood cell membranes,” Biophys. J. 13(3), 245–264 (1973).

[CrossRef]
[PubMed]

D. H. Tycko, M. H. Metz, E. A. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. Opt. 24(9), 1355–1365 (1985).

[CrossRef]
[PubMed]

A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-Matrix Computations of Light Scattering by Red Blood Cells,” Appl. Opt. 37(13), 2735–2748 (1998).

[CrossRef]

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38(1), 230–235 (1999).

[CrossRef]

S. V. Tsinopoulos and D. Polyzos, “Scattering of He-Ne laser light by an average-sized red blood cell,” Appl. Opt. 38(25), 5499–5510 (1999).

[CrossRef]

K. A. Semyanov, P. A. Tarasov, J. T. Soini, A. K. Petrov, and V. P. Maltsev, “Calibration-free method to determine the size and hemoglobin concentration of individual red blood cells from light scattering,” Appl. Opt. 39(31), 5884–5889 (2000).

[CrossRef]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005).

[CrossRef]
[PubMed]

R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, “Strain energy function of red blood cell membranes,” Biophys. J. 13(3), 245–264 (1973).

[CrossRef]
[PubMed]

Y. C. Fung, W. C. Tsang, and P. Patitucci, “High-resolution data on the geometry of red blood cells,” Biorheology 18(3-6), 369–385 (1981).

[PubMed]

P. Mazeron, S. Muller, and H. El Azouzi, “Deformation of erythrocytes under shear: a small-angle light scattering study,” Biorheology 34(2), 99–110 (1997).

[CrossRef]
[PubMed]

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52(1), 13–18 (2005).

[CrossRef]
[PubMed]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).

[CrossRef]
[PubMed]

Yu. Eremin, “The method of discrete sources in electromagnetic scattering by axially symmetric structures,” J. Commun. Technol. Electron. 45(Suppl.2), 269–280 (2000).

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).

[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. Theoretical analysis,” J. Opt. Soc. Am. A 23(10), 2578–2591 (2006).

[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23(10), 2592–2601 (2006).

[CrossRef]

Y. Okada, I. Mann, I. Sano, and S. Mukai, “Acceleration of the iterative solver in the discrete dipole approximation: Application to the orientation variation of irregularly shaped particles,” J. Quant. Spectrosc. Radiat. Transf. 109(8), 1461–1473 (2008).

[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).

[CrossRef]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 444–456 (2006).

[CrossRef]

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape models for erythrocyte: Light scattering analysis based on the discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 102(1), 3–10 (2006).

[CrossRef]

E. Eremina, “Light scattering by an erythrocyte based on Discrete Sources Method: shape and refractive index influence,” J. Quant. Spectrosc. Radiat. Transf. 110(14-16), 1526–1534 (2009).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” JQSRT 106, 558–589 (2007).

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” Opt. Commun. 244(1-6), 15–23 (2005).

[CrossRef]

J. P. Greer, J. Foerster, and J. N. Lukens, eds., Wintrobe's Clinical Hematology, (Lippincott Williams & Wilkins Publishers, Baltimore, USA, 2003).

V. P. Maltsev, and K. A. Semyanov, Characterisation of Bio-Particles from Light Scattering, Inverse and Ill-Posed Problems Series (VSP, Utrecht, 2004).

“ADDA - light scattering simulator using the discrete dipole approximation”, http://code.google.com/p/a-dda/ (2009).

M. A. Yurkin, “Discrete dipole simulations of light scattering by blood cells” PhD thesis, (University of Amsterdam, 2007).

Y. Eremin, N. Orlov, and A. Sveshnikov, “Models of electromagnetic scattering problems based on discrete sources method” in: Generalizes Multipole Techniques for Electromagnetic and Light Scattering, T. Wriedt, ed. (Elsevier, Amsterdam, 1999), Chapter 4.

M. A. Yurkin, and A. G. Hoekstra, “User manual for the discrete dipole approximation code ADDA v.0.79,” http://a-dda.googlecode.com/svn/tags/rel_0_79/doc/manual.pdf (2009).

“Description of the national compute cluster Lisa,” https://subtrac.sara.nl/userdoc/wiki/lisa/description (2009).