Abstract

Based on the basic imaging theory of the temporally and spatially mixed modulated polarization interference imaging spectrometer (TSMPIIS), a method of interferogram obtaining and processing under polychromatic light is presented. Especially, instead of traditional Fourier transform spectroscopy, according to the unique imaging theory and OPD variation of TSMPIIS, the spectrum is reconstructed respectively by wavelength. In addition, the originally experimental interferogram obtained by TSMPIIS is processed in this new way, the satisfying result of interference data and reconstructed spectrum prove that the method is very precise and feasible, which will great improve the performance of TSMPIIS.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Bell, Introductory to Fourier Transform Spectroscopy (Academic, 1972)
  2. M. J. Persky, “A review of spaceborne Fourier transform spectrometer for remote sensing,” Rev. Sci. Instrum. 66(10), 4763–4793 (1995).
    [CrossRef]
  3. K. D. Möller, “Wave-front-dividing array interferometer without moving parts for real-time spectroscope from the IR to the UV,” Appl. Opt. 34(9), 1493–1501 (1995).
    [CrossRef] [PubMed]
  4. J. B. Rafert, R. G. Sellar, and J. H. Blatt, “Monolithic Fourier transform imaging spectrometer,” Appl. Opt. 34(31), 7228–7230 (1995).
    [CrossRef] [PubMed]
  5. P. D. Matthew and A. K. Mohammad, “Solid-block stationary Fourier-transform spectrometer,” Appl. Opt. 31, 6096–6101 (1992).
  6. W. H. Smith and P. D. Hammer, “Digital array scanned interferometer: sensors and results,” Appl. Opt. 35(16), 2902–2909 (1996).
    [CrossRef] [PubMed]
  7. C. M. Zhang, B. Xiangli, and B. C. Zhao, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1-2), 21–26 (2002).
    [CrossRef]
  8. C. M. Zhang, B. Xiangli, and B. C. Zhao, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227(4-6), 221–225 (2003).
    [CrossRef]
  9. C. M. Zhang, B. C. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43(33), 6090–6094 (2004).
    [CrossRef] [PubMed]
  10. C. M. Zhang, B. Xiangli, and B. C. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A. 6, 815–817 (2004).
  11. C. M. Zhang, X. G. Yan, and B. C. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050–2056 (2008).
  12. X. H. Jian and C. M. Zhang, “Wide-spectrum reconstruction method for birefringence interference imaging spectrometer,” Opt. Lett. (to be published).
    [PubMed]
  13. L. Wu, C. M. Zhang, and B. C. Zhao, “Analysis of the lateral displacement and optical path difference in wide-field-of-view polarization interference imaging spectrometer,” Opt. Commun. 273(1), 67–73 (2007).
    [CrossRef]

2008 (1)

C. M. Zhang, X. G. Yan, and B. C. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050–2056 (2008).

2007 (1)

L. Wu, C. M. Zhang, and B. C. Zhao, “Analysis of the lateral displacement and optical path difference in wide-field-of-view polarization interference imaging spectrometer,” Opt. Commun. 273(1), 67–73 (2007).
[CrossRef]

2004 (2)

C. M. Zhang, B. Xiangli, and B. C. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A. 6, 815–817 (2004).

C. M. Zhang, B. C. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43(33), 6090–6094 (2004).
[CrossRef] [PubMed]

2003 (1)

C. M. Zhang, B. Xiangli, and B. C. Zhao, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227(4-6), 221–225 (2003).
[CrossRef]

2002 (1)

C. M. Zhang, B. Xiangli, and B. C. Zhao, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1-2), 21–26 (2002).
[CrossRef]

1996 (1)

1995 (3)

1992 (1)

Blatt, J. H.

Hammer, P. D.

Jian, X. H.

X. H. Jian and C. M. Zhang, “Wide-spectrum reconstruction method for birefringence interference imaging spectrometer,” Opt. Lett. (to be published).
[PubMed]

Matthew, P. D.

Mohammad, A. K.

Möller, K. D.

Persky, M. J.

M. J. Persky, “A review of spaceborne Fourier transform spectrometer for remote sensing,” Rev. Sci. Instrum. 66(10), 4763–4793 (1995).
[CrossRef]

Rafert, J. B.

Sellar, R. G.

Smith, W. H.

Wu, L.

L. Wu, C. M. Zhang, and B. C. Zhao, “Analysis of the lateral displacement and optical path difference in wide-field-of-view polarization interference imaging spectrometer,” Opt. Commun. 273(1), 67–73 (2007).
[CrossRef]

Xiangli, B.

C. M. Zhang, B. Xiangli, and B. C. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A. 6, 815–817 (2004).

C. M. Zhang, B. C. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43(33), 6090–6094 (2004).
[CrossRef] [PubMed]

C. M. Zhang, B. Xiangli, and B. C. Zhao, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227(4-6), 221–225 (2003).
[CrossRef]

C. M. Zhang, B. Xiangli, and B. C. Zhao, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1-2), 21–26 (2002).
[CrossRef]

Yan, X. G.

C. M. Zhang, X. G. Yan, and B. C. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050–2056 (2008).

Zhang, C. M.

C. M. Zhang, X. G. Yan, and B. C. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050–2056 (2008).

L. Wu, C. M. Zhang, and B. C. Zhao, “Analysis of the lateral displacement and optical path difference in wide-field-of-view polarization interference imaging spectrometer,” Opt. Commun. 273(1), 67–73 (2007).
[CrossRef]

C. M. Zhang, B. Xiangli, and B. C. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A. 6, 815–817 (2004).

C. M. Zhang, B. C. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43(33), 6090–6094 (2004).
[CrossRef] [PubMed]

C. M. Zhang, B. Xiangli, and B. C. Zhao, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227(4-6), 221–225 (2003).
[CrossRef]

C. M. Zhang, B. Xiangli, and B. C. Zhao, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1-2), 21–26 (2002).
[CrossRef]

X. H. Jian and C. M. Zhang, “Wide-spectrum reconstruction method for birefringence interference imaging spectrometer,” Opt. Lett. (to be published).
[PubMed]

Zhao, B. C.

C. M. Zhang, X. G. Yan, and B. C. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050–2056 (2008).

L. Wu, C. M. Zhang, and B. C. Zhao, “Analysis of the lateral displacement and optical path difference in wide-field-of-view polarization interference imaging spectrometer,” Opt. Commun. 273(1), 67–73 (2007).
[CrossRef]

C. M. Zhang, B. Xiangli, and B. C. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A. 6, 815–817 (2004).

C. M. Zhang, B. C. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43(33), 6090–6094 (2004).
[CrossRef] [PubMed]

C. M. Zhang, B. Xiangli, and B. C. Zhao, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227(4-6), 221–225 (2003).
[CrossRef]

C. M. Zhang, B. Xiangli, and B. C. Zhao, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1-2), 21–26 (2002).
[CrossRef]

Appl. Opt. (5)

J. Opt. A. (1)

C. M. Zhang, B. Xiangli, and B. C. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A. 6, 815–817 (2004).

Opt. Commun. (4)

C. M. Zhang, X. G. Yan, and B. C. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050–2056 (2008).

L. Wu, C. M. Zhang, and B. C. Zhao, “Analysis of the lateral displacement and optical path difference in wide-field-of-view polarization interference imaging spectrometer,” Opt. Commun. 273(1), 67–73 (2007).
[CrossRef]

C. M. Zhang, B. Xiangli, and B. C. Zhao, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1-2), 21–26 (2002).
[CrossRef]

C. M. Zhang, B. Xiangli, and B. C. Zhao, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227(4-6), 221–225 (2003).
[CrossRef]

Opt. Lett. (1)

X. H. Jian and C. M. Zhang, “Wide-spectrum reconstruction method for birefringence interference imaging spectrometer,” Opt. Lett. (to be published).
[PubMed]

Rev. Sci. Instrum. (1)

M. J. Persky, “A review of spaceborne Fourier transform spectrometer for remote sensing,” Rev. Sci. Instrum. 66(10), 4763–4793 (1995).
[CrossRef]

Other (1)

R. J. Bell, Introductory to Fourier Transform Spectroscopy (Academic, 1972)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical diagram of the STMPIIS

Fig. 2
Fig. 2

Field of view of TSMPIIS

Fig. 3
Fig. 3

Optical path difference distribution on the detector of WPIIS at wavelength of 632nm

Fig. 4
Fig. 4

Maximal optical path difference distribution of TSMPIIS at the wavelength range of 0.4-1.0μm

Fig. 5
Fig. 5

A target’s representative interferogram and images obtained by TSMPIIS under TSM model

Fig. 6
Fig. 6

One enlarged interferogram and image

Fig. g007
Fig. g007

Fig. 7. A target’s all interference data of polychromatic light detected by TSMPIIS

Fig. 8
Fig. 8

Reconstructed spectrum of the polychromatic light

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ = t [ a 2 b 2 a 2 + b 2 ( cos ω + sin ω ) sin i + a 2 ( a 2 b 2 ) 2 ( a 2 + b 2 ) 3 / 2 ( cos 2 ω sin 2 ω ) sin 2 i + ]
B ( σ ) = + [ I ( δ ) 1 2 I ( 0 ) ] e i 2 π σ δ d δ
[ I λ 1 0 I λ 1 1 I λ 1 2 . . I λ 1 250 ] + [ I λ 2 0 I λ 2 1 I λ 2 2 . . I λ 2 250 ] + [ I λ 3 0 I λ 3 1 I λ 3 2 . . I λ 3 250 ] + ...... + [ I λ 250 0 I λ 250 1 I λ 250 2 . . I λ 250 250 ] = [ I 0 I 1 I 2 . . I 250 ]
I λ n m = I λ n 0 ( 1 + cos Δ m ) / 2                                                                                       ( n = 0 , 1 , 2 , ... , 250 ;           m = 0 , 1 , 2 , ... , 250 )
[       1                                         1                             ...                                     1 K 1 1                             K 2 1                     ...                             K 250 1 K 1 2                           K 2 2                     ...                           K 250 2       .       . K 1 250                   K 2 250                   ...                       K 250 N ] [ I λ 1 0 I λ 2 0 . . . I λ 250 0 ] = [ I 0 I 1 . . . I 250 ]

Metrics