Abstract

We, for the first time, present the ultrafast optical nonlinear response of a hydrogenated amorphous silicon (a-Si:H) wire waveguide using femtosecond pulses. We show cross-phase and cross-absorption modulations measured using the heterodyne pump-probe method and estimate the optical Kerr coefficient and two-photon absorption coefficient for the amorphous silicon waveguide. The pumping energy of 0.8 eV is slightly lower than that required to achieve two-photon excitation at the band gap of a-Si:H (~1.7 eV). An ultrafast response of less than 100 fs is observed, which indicates that the free-carrier effect is suppressed by the localized states in the band gap.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12(17), 4094–4102 (2004).
    [CrossRef] [PubMed]
  2. T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
    [CrossRef] [PubMed]
  3. H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
    [CrossRef]
  4. C. Manolatou and M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” J. Lightwave Technol. 24(3), 1433–1439 (2006).
    [CrossRef]
  5. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 mum femtosecond pulses,” Opt. Express 14(18), 8336–8346 (2006).
    [CrossRef] [PubMed]
  6. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: Fundamental characteristics and applications,” Electron. Commun. Jpn. 89, 42–55 (2006).
  7. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express 15(3), 1135–1146 (2007).
    [CrossRef] [PubMed]
  8. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
    [CrossRef] [PubMed]
  9. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [CrossRef] [PubMed]
  10. S. Suda, T. Ogasawara, Y. Shoji, K. Kintaka, H. Kawashima, T. Hasama, and H. Ishikawa, “Femtosecond index dynamics in silicon wire waveguides,” in Proceedings of IEEE Conference on Group IV photonics (Institute of Electrical and Electronics Engineers, New York, 2009), pp. 98–100.
  11. Y. Liu and H. K. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90(21), 211105 (2007).
    [CrossRef]
  12. R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13(2), 519–525 (2005).
    [CrossRef] [PubMed]
  13. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrafast free-carrier lifetime for low nonlinear loss in silicon waveguides,” in Conference on Lasers and Electro-Optics/ International Quantum Electronics Conference, Technical Digest (CD) (Optical Society of America, 2009), paper CThCC1.
  14. S. Suda, S. Namiki, Y. Shoji, K. Kintaka, H. Kawashima, and T. Hasama, H, Ishikawa, “High-bit-rate optical switchi based on XPM in silicon waveguides,” in Proceedings of IEEE Conference on Photonics in Switching (Institute of Electrical and Electronics Engineers, New York, 2009), paper ThI3–4.
  15. T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, and T. Hirao, “Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon,” Appl. Phys. Lett. 68(17), 2380–2382 (1996).
    [CrossRef]
  16. T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
    [CrossRef]
  17. K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
    [CrossRef]
  18. A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Ö. Muller, “Amorphous silicon 3-D tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
    [CrossRef]
  19. R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Y. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express 16(16), 11682–11690 (2008).
    [CrossRef] [PubMed]
  20. K. Ikeda, Y. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express 15(26), 17761–17771 (2007).
    [CrossRef] [PubMed]
  21. A. J. Zilkie, J. Meier, P. W. E. Smith, M. Mojahedi, J. S. Aitchison, P. J. Poole, C. N. Allen, P. Barrios, and D. Poitras, “Femtosecond gain and index dynamics in an InAs/InGaAsP quantum dot amplifier operating at 1.55 microm,” Opt. Express 14(23), 11453–11459 (2006).
    [CrossRef] [PubMed]

2008 (2)

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Ö. Muller, “Amorphous silicon 3-D tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[CrossRef]

R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Y. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express 16(16), 11682–11690 (2008).
[CrossRef] [PubMed]

2007 (6)

2006 (4)

2005 (3)

2004 (1)

2003 (1)

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

1996 (1)

T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, and T. Hirao, “Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon,” Appl. Phys. Lett. 68(17), 2380–2382 (1996).
[CrossRef]

Agrawal, G. P.

Aitchison, J. S.

Allen, C. N.

Amano, S.

T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, and T. Hirao, “Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon,” Appl. Phys. Lett. 68(17), 2380–2382 (1996).
[CrossRef]

Amthor, J.

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Ö. Muller, “Amorphous silicon 3-D tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[CrossRef]

Arakawa, Y.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Baets, R.

Barrios, P.

Beals, M.

Boyraz, O.

Chen, X.

Cheng, J.

Chu, T.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Cohen, O.

Dadap, J. I.

Dekker, R.

Driessen, A.

Dumon, P.

Fainman, Y.

Fang, A. W.

Först, M.

Freude, W.

Fukuda, H.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: Fundamental characteristics and applications,” Electron. Commun. Jpn. 89, 42–55 (2006).

Hak, D.

Harke, A.

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Ö. Muller, “Amorphous silicon 3-D tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[CrossRef]

Hata, N.

T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, and T. Hirao, “Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon,” Appl. Phys. Lett. 68(17), 2380–2382 (1996).
[CrossRef]

Hirao, T.

T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, and T. Hirao, “Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon,” Appl. Phys. Lett. 68(17), 2380–2382 (1996).
[CrossRef]

Hong, C. Y.

Horn, O.

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Ö. Muller, “Amorphous silicon 3-D tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[CrossRef]

Hsieh, I.-W.

Ikeda, K.

Ikedo, H.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Ishida, S.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Itabashi, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: Fundamental characteristics and applications,” Electron. Commun. Jpn. 89, 42–55 (2006).

Jacome, L.

Jalali, B.

Jones, R.

Kamei, T.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, and T. Hirao, “Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon,” Appl. Phys. Lett. 68(17), 2380–2382 (1996).
[CrossRef]

Kawanishi, T.

Kimerling, L.

Koonath, P.

Koos, C.

Krause, M.

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Ö. Muller, “Amorphous silicon 3-D tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[CrossRef]

Leuthold, J.

Liang, T. K.

Lin, Q.

Lipka, T.

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Ö. Muller, “Amorphous silicon 3-D tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[CrossRef]

Lipson, M.

Liu, A.

Liu, Y.

Y. Liu and H. K. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90(21), 211105 (2007).
[CrossRef]

Manolatou, C.

Mathies, R. A.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Matsuda, A.

T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, and T. Hirao, “Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon,” Appl. Phys. Lett. 68(17), 2380–2382 (1996).
[CrossRef]

McNab, S. J.

Meier, J.

Michel, J.

Mojahedi, M.

Moormann, C.

Morita, H.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: Fundamental characteristics and applications,” Electron. Commun. Jpn. 89, 42–55 (2006).

Muller, J. Ö.

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Ö. Muller, “Amorphous silicon 3-D tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[CrossRef]

Niehusmann, J.

Nunes, L. R.

Ohshima, A.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Osgood, R. M.

Paegel, B. M.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Painter, O. J.

Paniccia, M. J.

Panoiu, N. C.

Poitras, D.

Pomerene, A.

Poole, P. J.

Poulton, C.

Priem, G.

Raghunathan, V.

Rong, H.

Sakamoto, T.

Sasagawa, K.

Scherer, J. R.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Shen, Y.

Shiraishi, K.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Shirane, M.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Shoji, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: Fundamental characteristics and applications,” Electron. Commun. Jpn. 89, 42–55 (2006).

Skelley, A. M.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Smith, P. W. E.

Street, R. A.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Sun, R.

Takahashi, J.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: Fundamental characteristics and applications,” Electron. Commun. Jpn. 89, 42–55 (2006).

Takahashi, M.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: Fundamental characteristics and applications,” Electron. Commun. Jpn. 89, 42–55 (2006).

Tamechika, E.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: Fundamental characteristics and applications,” Electron. Commun. Jpn. 89, 42–55 (2006).

Tsai, C. S.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Tsang, H.

Tsang, H. K.

Y. Liu and H. K. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90(21), 211105 (2007).
[CrossRef]

Tsuchiya, M.

Tsuchizawa, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: Fundamental characteristics and applications,” Electron. Commun. Jpn. 89, 42–55 (2006).

Tsukamoto, K.

T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, and T. Hirao, “Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon,” Appl. Phys. Lett. 68(17), 2380–2382 (1996).
[CrossRef]

Uchiyama, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: Fundamental characteristics and applications,” Electron. Commun. Jpn. 89, 42–55 (2006).

Uchiyama, T.

T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, and T. Hirao, “Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon,” Appl. Phys. Lett. 68(17), 2380–2382 (1996).
[CrossRef]

Van Thourhout, D.

Vlasov, Y. A.

Wahlbrink, T.

Watanabe, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: Fundamental characteristics and applications,” Electron. Commun. Jpn. 89, 42–55 (2006).

Yamada, H.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Yamada, K.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: Fundamental characteristics and applications,” Electron. Commun. Jpn. 89, 42–55 (2006).

Yoda, H.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Yokoyama, H.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Yoshioka, Y.

T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, and T. Hirao, “Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon,” Appl. Phys. Lett. 68(17), 2380–2382 (1996).
[CrossRef]

Zilkie, A. J.

Anal. Chem. (1)

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Y. Liu and H. K. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90(21), 211105 (2007).
[CrossRef]

T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, and T. Hirao, “Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon,” Appl. Phys. Lett. 68(17), 2380–2382 (1996).
[CrossRef]

Electron. Commun. Jpn. (1)

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: Fundamental characteristics and applications,” Electron. Commun. Jpn. 89, 42–55 (2006).

IEEE Photon. Technol. Lett. (1)

A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Ö. Muller, “Amorphous silicon 3-D tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Jpn. J. Appl. Phys. 44(No. 9A), 6541–6545 (2005).
[CrossRef]

Opt. Express (10)

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 mum femtosecond pulses,” Opt. Express 14(18), 8336–8346 (2006).
[CrossRef] [PubMed]

O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12(17), 4094–4102 (2004).
[CrossRef] [PubMed]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
[CrossRef] [PubMed]

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express 15(3), 1135–1146 (2007).
[CrossRef] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
[CrossRef] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Y. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express 16(16), 11682–11690 (2008).
[CrossRef] [PubMed]

K. Ikeda, Y. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express 15(26), 17761–17771 (2007).
[CrossRef] [PubMed]

A. J. Zilkie, J. Meier, P. W. E. Smith, M. Mojahedi, J. S. Aitchison, P. J. Poole, C. N. Allen, P. Barrios, and D. Poitras, “Femtosecond gain and index dynamics in an InAs/InGaAsP quantum dot amplifier operating at 1.55 microm,” Opt. Express 14(23), 11453–11459 (2006).
[CrossRef] [PubMed]

R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13(2), 519–525 (2005).
[CrossRef] [PubMed]

Other (3)

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrafast free-carrier lifetime for low nonlinear loss in silicon waveguides,” in Conference on Lasers and Electro-Optics/ International Quantum Electronics Conference, Technical Digest (CD) (Optical Society of America, 2009), paper CThCC1.

S. Suda, S. Namiki, Y. Shoji, K. Kintaka, H. Kawashima, and T. Hasama, H, Ishikawa, “High-bit-rate optical switchi based on XPM in silicon waveguides,” in Proceedings of IEEE Conference on Photonics in Switching (Institute of Electrical and Electronics Engineers, New York, 2009), paper ThI3–4.

S. Suda, T. Ogasawara, Y. Shoji, K. Kintaka, H. Kawashima, T. Hasama, and H. Ishikawa, “Femtosecond index dynamics in silicon wire waveguides,” in Proceedings of IEEE Conference on Group IV photonics (Institute of Electrical and Electronics Engineers, New York, 2009), pp. 98–100.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) SEM image of cross section of fabricated a-Si:H wire waveguide. (b) Insertion loss as a function of propagation length at λ = 1550 nm.

Fig. 2
Fig. 2

Experimental setup of heterodyne pump-probe measurement.

Fig. 3
Fig. 3

Experimental results of measured change in (a) amplitude and (b) phase of probe pulse for different pulse energies of pump pulse. Insets show the experimental results for c-Si obtained previously using the same method [10].

Fig. 4
Fig. 4

(a) XAM and (b) XPM as functions of incident pump peak power. The plotted values are the measurement results. Dashed lines show calculation results for z = 2.0 mm where βT = 0.08 cm/GW and n 2 = 0.5 × 10−18 m2/W.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d I p u m p d z = α I p u m p β T ( I p u m p + 2 I p r o b e ) I p u m p ,
d I p r o b e d z = α I p r o b e β T ( I p r o b e + 2 I p u m p ) I p r o b e ,
d φ p r o b e d z = 2 k 0 n 2 I p u m p ,

Metrics