Abstract

An out-of-plane digital holographic interferometry system is used to detect and measure insect’s wing micro deformations. The in-vivo phenomenon of the flapping is registered using a high power cw laser and a high speed camera. A series of digital holograms with the deformation encoded are obtained. Full field deformation maps are presented for an eastern tiger swallowtail butterfly (Pterourus multicaudata). Results show no uniform or symmetrical deformations between wings. These deformations are in the order of hundreds of nanometers over the entire surface. Out-of-plane deformation maps are presented using the unwrapped phase maps.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Jones, and C. Wykes, Holographic and Speckle Interferometry (Cambridge Univ. Press, 1989).
  2. K. J. Gasvik, Optical Metrology (John Wiley & Sons, Ltd., 2002).
  3. R. K. Erf, Holographic Nondestructive Testing (Academic Press Inc., 1974).
  4. C. M. Vest, Holographic Interferometry (John Wiley & Sons, 1979).
  5. P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (John Wiley & Sons,Ltd., 2001).
  6. S. Schedin, G. Pedrini, and H. J. Tiziani, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39(16), 2853–2857 (2000).
    [CrossRef]
  7. D. L. Grodnitsky, Form and Function of Insect Wings (John Hopkins University, 1999).
  8. R. Dudley, The biomedical of insect flight (Princeton University Press, 2000).
  9. S. P. Sane, “The aerodynamics of insect flight,” J. Exp. Biol. 206(23), 4191–4208 (2003).
    [CrossRef] [PubMed]
  10. C. P. Ellington, “The novel aerodynamics of insect flight: applications to micro-air vehicles,” J. Exp. Biol. 202(Pt 23), 3439–3448 (1999).
    [PubMed]
  11. T. L. Hedrick, J. R. Usherwood, and A. A. Biewener, “Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds,” J. Exp. Biol. 207(10), 1689–1702 (2004).
    [CrossRef] [PubMed]
  12. J. R. Usherwood and C. P. Ellington, “The aerodynamics of revolving wings I. Model hawkmoth wings,” J. Exp. Biol. 205(Pt 11), 1547–1564 (2002).
    [PubMed]
  13. S. J. Steppan, “Flexural stiffness patterns of butterfly wings (Papilionoidea),” J. Res. Lepid. 35, 61–67 (1996).
  14. S. A. Combes and T. L. Daniel, “Flexural stiffness in insect wings. I. Scaling and the influence of wing venation,” J. Exp. Biol. 206(17), 2979–2987 (2003).
    [CrossRef] [PubMed]
  15. J. R. Usherwood and C. P. Ellington, “The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail,” J. Exp. Biol. 205(Pt 11), 1565–1576 (2002).
    [PubMed]
  16. S. Sudo, K. Tsuyuki, and K. Kanno, “Wings characteristics and flapping behavior of flying Insects,” JSEM 45, 550–555 (2005).
  17. R. B. Srygley and A. L. R. Thomas, “Unconventional lift-generating mechanisms in free-flying butterflies,” Nature 420(6916), 660–664 (2002).
    [CrossRef] [PubMed]
  18. A. L. R. Thomas, G. K. Taylor, R. B. Srygley, R. L. Nudds, and R. J. Bomphrey, “Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack,” J. Exp. Biol. 207(24), 4299–4323 (2004).
    [CrossRef] [PubMed]
  19. M. Dickinson, “Solving the mystery of insect flight,” Sci. Am. 284, 34–41 (2001).
  20. J. Yan, R. J. Wood, S. Avadhanula, M. Sitti, and R. S. Fearing, “Towards flapping wing control for a micromechanical flying insect,” in Proceedings of IEEE Conference 4 (IEEE, 2001), pp. 3901- 3908.
  21. S. Avadhanula, R. J. Wood, E. Steltz, J. Yan, and R. S. Fearing, “Lift force improvements for the micromechanical flying insect,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems 2 (IEEE 2003), pp. 1350- 1356.
  22. I. D. Wallace, N. J. Lawson, A. R. Harvey, J. D. C. Jones, and A. J. Moore, “High-speed photogrammetry system for measuring the kinematics of insect wings,” Appl. Opt. 45(17), 4165–4173 (2006).
    [CrossRef] [PubMed]
  23. C. Pérez-López, M. H. De la Torre-Ibarra, and F. Mendoza Santoyo, “Very high speed cw digital holographic interferometry,” Opt. Express 14(21), 9709–9715 (2006).
    [CrossRef] [PubMed]
  24. S. Sunada, D. Song, X. Meng, H. Wang, L. Zeng, and K. Kawachi, “Optical measurement of the deformation, motion and generated force of the wings of a moth, Mythima separate (Walker),” JSME Int. J. Ser. B 45(4), 836–842 (2002).
    [CrossRef]
  25. I. R. Hooper, P. Vukusic, and R. J. Wootton, “Detailed optical study of the transparent wing membranes of the dragonfly Aeshna cyanea,” Opt. Express 14(11), 4891–4897 (2006).
    [CrossRef] [PubMed]
  26. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45(15), 3456–3462 (2006).
    [CrossRef] [PubMed]
  27. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
    [CrossRef]
  28. M. De la Torre-Ibarra, F. Mendoza-Santoyo, C. Pérez-López, and S. A. Tonatiuh, “Detection of surface strain by three-dimensional digital holography,” Appl. Opt. 44(1), 27–31 (2005).
    [PubMed]
  29. A. Fernández, A. J. Moore, C. Pérez-López, A. F. Doval, and J. Blanco-García, “Study of transient deformations with pulsed TV holography: application to crack detection,” Appl. Opt. 36(10), 2058–2065 (1997).
    [CrossRef] [PubMed]
  30. N. K. Mohan, A. Andersson, M. Sjödahl, and N.-E. Molin, “Optical configuration for TV holography measurement of in-plane and out-of-plane deformations,” Appl. Opt. 39(4), 573–577 (2000).
    [CrossRef]
  31. M. Takeda, H. Ina, S. Kobayashi, H Ina, and S Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [CrossRef]

2006

2005

M. De la Torre-Ibarra, F. Mendoza-Santoyo, C. Pérez-López, and S. A. Tonatiuh, “Detection of surface strain by three-dimensional digital holography,” Appl. Opt. 44(1), 27–31 (2005).
[PubMed]

S. Sudo, K. Tsuyuki, and K. Kanno, “Wings characteristics and flapping behavior of flying Insects,” JSEM 45, 550–555 (2005).

2004

T. L. Hedrick, J. R. Usherwood, and A. A. Biewener, “Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds,” J. Exp. Biol. 207(10), 1689–1702 (2004).
[CrossRef] [PubMed]

A. L. R. Thomas, G. K. Taylor, R. B. Srygley, R. L. Nudds, and R. J. Bomphrey, “Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack,” J. Exp. Biol. 207(24), 4299–4323 (2004).
[CrossRef] [PubMed]

2003

S. P. Sane, “The aerodynamics of insect flight,” J. Exp. Biol. 206(23), 4191–4208 (2003).
[CrossRef] [PubMed]

S. A. Combes and T. L. Daniel, “Flexural stiffness in insect wings. I. Scaling and the influence of wing venation,” J. Exp. Biol. 206(17), 2979–2987 (2003).
[CrossRef] [PubMed]

2002

J. R. Usherwood and C. P. Ellington, “The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail,” J. Exp. Biol. 205(Pt 11), 1565–1576 (2002).
[PubMed]

R. B. Srygley and A. L. R. Thomas, “Unconventional lift-generating mechanisms in free-flying butterflies,” Nature 420(6916), 660–664 (2002).
[CrossRef] [PubMed]

J. R. Usherwood and C. P. Ellington, “The aerodynamics of revolving wings I. Model hawkmoth wings,” J. Exp. Biol. 205(Pt 11), 1547–1564 (2002).
[PubMed]

S. Sunada, D. Song, X. Meng, H. Wang, L. Zeng, and K. Kawachi, “Optical measurement of the deformation, motion and generated force of the wings of a moth, Mythima separate (Walker),” JSME Int. J. Ser. B 45(4), 836–842 (2002).
[CrossRef]

2001

M. Dickinson, “Solving the mystery of insect flight,” Sci. Am. 284, 34–41 (2001).

2000

1999

S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
[CrossRef]

C. P. Ellington, “The novel aerodynamics of insect flight: applications to micro-air vehicles,” J. Exp. Biol. 202(Pt 23), 3439–3448 (1999).
[PubMed]

1997

1996

S. J. Steppan, “Flexural stiffness patterns of butterfly wings (Papilionoidea),” J. Res. Lepid. 35, 61–67 (1996).

1982

Andersson, A.

Biewener, A. A.

T. L. Hedrick, J. R. Usherwood, and A. A. Biewener, “Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds,” J. Exp. Biol. 207(10), 1689–1702 (2004).
[CrossRef] [PubMed]

Blanco-García, J.

Bomphrey, R. J.

A. L. R. Thomas, G. K. Taylor, R. B. Srygley, R. L. Nudds, and R. J. Bomphrey, “Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack,” J. Exp. Biol. 207(24), 4299–4323 (2004).
[CrossRef] [PubMed]

Combes, S. A.

S. A. Combes and T. L. Daniel, “Flexural stiffness in insect wings. I. Scaling and the influence of wing venation,” J. Exp. Biol. 206(17), 2979–2987 (2003).
[CrossRef] [PubMed]

Daniel, T. L.

S. A. Combes and T. L. Daniel, “Flexural stiffness in insect wings. I. Scaling and the influence of wing venation,” J. Exp. Biol. 206(17), 2979–2987 (2003).
[CrossRef] [PubMed]

De la Torre-Ibarra, M.

De la Torre-Ibarra, M. H.

Dickinson, M.

M. Dickinson, “Solving the mystery of insect flight,” Sci. Am. 284, 34–41 (2001).

Doval, A. F.

Ellington, C. P.

J. R. Usherwood and C. P. Ellington, “The aerodynamics of revolving wings I. Model hawkmoth wings,” J. Exp. Biol. 205(Pt 11), 1547–1564 (2002).
[PubMed]

J. R. Usherwood and C. P. Ellington, “The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail,” J. Exp. Biol. 205(Pt 11), 1565–1576 (2002).
[PubMed]

C. P. Ellington, “The novel aerodynamics of insect flight: applications to micro-air vehicles,” J. Exp. Biol. 202(Pt 23), 3439–3448 (1999).
[PubMed]

Fernández, A.

Gusev, M. E.

Harvey, A. R.

Hedrick, T. L.

T. L. Hedrick, J. R. Usherwood, and A. A. Biewener, “Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds,” J. Exp. Biol. 207(10), 1689–1702 (2004).
[CrossRef] [PubMed]

Hooper, I. R.

Ina, H

Ina, H.

Jones, J. D. C.

Kanno, K.

S. Sudo, K. Tsuyuki, and K. Kanno, “Wings characteristics and flapping behavior of flying Insects,” JSEM 45, 550–555 (2005).

Kawachi, K.

S. Sunada, D. Song, X. Meng, H. Wang, L. Zeng, and K. Kawachi, “Optical measurement of the deformation, motion and generated force of the wings of a moth, Mythima separate (Walker),” JSME Int. J. Ser. B 45(4), 836–842 (2002).
[CrossRef]

Kobayashi, S

Kobayashi, S.

Lawson, N. J.

Mendoza Santoyo, F.

Mendoza-Santoyo, F.

Meng, X.

S. Sunada, D. Song, X. Meng, H. Wang, L. Zeng, and K. Kawachi, “Optical measurement of the deformation, motion and generated force of the wings of a moth, Mythima separate (Walker),” JSME Int. J. Ser. B 45(4), 836–842 (2002).
[CrossRef]

Mohan, N. K.

Molin, N.-E.

Moore, A. J.

Nudds, R. L.

A. L. R. Thomas, G. K. Taylor, R. B. Srygley, R. L. Nudds, and R. J. Bomphrey, “Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack,” J. Exp. Biol. 207(24), 4299–4323 (2004).
[CrossRef] [PubMed]

Osten, W.

Pedrini, G.

Pérez-López, C.

Sane, S. P.

S. P. Sane, “The aerodynamics of insect flight,” J. Exp. Biol. 206(23), 4191–4208 (2003).
[CrossRef] [PubMed]

Santoyo, F. M.

Schedin, S.

Sjödahl, M.

Song, D.

S. Sunada, D. Song, X. Meng, H. Wang, L. Zeng, and K. Kawachi, “Optical measurement of the deformation, motion and generated force of the wings of a moth, Mythima separate (Walker),” JSME Int. J. Ser. B 45(4), 836–842 (2002).
[CrossRef]

Srygley, R. B.

A. L. R. Thomas, G. K. Taylor, R. B. Srygley, R. L. Nudds, and R. J. Bomphrey, “Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack,” J. Exp. Biol. 207(24), 4299–4323 (2004).
[CrossRef] [PubMed]

R. B. Srygley and A. L. R. Thomas, “Unconventional lift-generating mechanisms in free-flying butterflies,” Nature 420(6916), 660–664 (2002).
[CrossRef] [PubMed]

Steppan, S. J.

S. J. Steppan, “Flexural stiffness patterns of butterfly wings (Papilionoidea),” J. Res. Lepid. 35, 61–67 (1996).

Sudo, S.

S. Sudo, K. Tsuyuki, and K. Kanno, “Wings characteristics and flapping behavior of flying Insects,” JSEM 45, 550–555 (2005).

Sunada, S.

S. Sunada, D. Song, X. Meng, H. Wang, L. Zeng, and K. Kawachi, “Optical measurement of the deformation, motion and generated force of the wings of a moth, Mythima separate (Walker),” JSME Int. J. Ser. B 45(4), 836–842 (2002).
[CrossRef]

Takeda, M.

Taylor, G. K.

A. L. R. Thomas, G. K. Taylor, R. B. Srygley, R. L. Nudds, and R. J. Bomphrey, “Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack,” J. Exp. Biol. 207(24), 4299–4323 (2004).
[CrossRef] [PubMed]

Thomas, A. L. R.

A. L. R. Thomas, G. K. Taylor, R. B. Srygley, R. L. Nudds, and R. J. Bomphrey, “Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack,” J. Exp. Biol. 207(24), 4299–4323 (2004).
[CrossRef] [PubMed]

R. B. Srygley and A. L. R. Thomas, “Unconventional lift-generating mechanisms in free-flying butterflies,” Nature 420(6916), 660–664 (2002).
[CrossRef] [PubMed]

Tiziani, H. J.

Tonatiuh, S. A.

Tsuyuki, K.

S. Sudo, K. Tsuyuki, and K. Kanno, “Wings characteristics and flapping behavior of flying Insects,” JSEM 45, 550–555 (2005).

Usherwood, J. R.

T. L. Hedrick, J. R. Usherwood, and A. A. Biewener, “Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds,” J. Exp. Biol. 207(10), 1689–1702 (2004).
[CrossRef] [PubMed]

J. R. Usherwood and C. P. Ellington, “The aerodynamics of revolving wings I. Model hawkmoth wings,” J. Exp. Biol. 205(Pt 11), 1547–1564 (2002).
[PubMed]

J. R. Usherwood and C. P. Ellington, “The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail,” J. Exp. Biol. 205(Pt 11), 1565–1576 (2002).
[PubMed]

Vukusic, P.

Wallace, I. D.

Wang, H.

S. Sunada, D. Song, X. Meng, H. Wang, L. Zeng, and K. Kawachi, “Optical measurement of the deformation, motion and generated force of the wings of a moth, Mythima separate (Walker),” JSME Int. J. Ser. B 45(4), 836–842 (2002).
[CrossRef]

Wootton, R. J.

Zeng, L.

S. Sunada, D. Song, X. Meng, H. Wang, L. Zeng, and K. Kawachi, “Optical measurement of the deformation, motion and generated force of the wings of a moth, Mythima separate (Walker),” JSME Int. J. Ser. B 45(4), 836–842 (2002).
[CrossRef]

Appl. Opt.

J. Exp. Biol.

S. P. Sane, “The aerodynamics of insect flight,” J. Exp. Biol. 206(23), 4191–4208 (2003).
[CrossRef] [PubMed]

C. P. Ellington, “The novel aerodynamics of insect flight: applications to micro-air vehicles,” J. Exp. Biol. 202(Pt 23), 3439–3448 (1999).
[PubMed]

T. L. Hedrick, J. R. Usherwood, and A. A. Biewener, “Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds,” J. Exp. Biol. 207(10), 1689–1702 (2004).
[CrossRef] [PubMed]

J. R. Usherwood and C. P. Ellington, “The aerodynamics of revolving wings I. Model hawkmoth wings,” J. Exp. Biol. 205(Pt 11), 1547–1564 (2002).
[PubMed]

S. A. Combes and T. L. Daniel, “Flexural stiffness in insect wings. I. Scaling and the influence of wing venation,” J. Exp. Biol. 206(17), 2979–2987 (2003).
[CrossRef] [PubMed]

J. R. Usherwood and C. P. Ellington, “The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail,” J. Exp. Biol. 205(Pt 11), 1565–1576 (2002).
[PubMed]

A. L. R. Thomas, G. K. Taylor, R. B. Srygley, R. L. Nudds, and R. J. Bomphrey, “Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack,” J. Exp. Biol. 207(24), 4299–4323 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Res. Lepid.

S. J. Steppan, “Flexural stiffness patterns of butterfly wings (Papilionoidea),” J. Res. Lepid. 35, 61–67 (1996).

JSEM

S. Sudo, K. Tsuyuki, and K. Kanno, “Wings characteristics and flapping behavior of flying Insects,” JSEM 45, 550–555 (2005).

JSME Int. J. Ser. B

S. Sunada, D. Song, X. Meng, H. Wang, L. Zeng, and K. Kawachi, “Optical measurement of the deformation, motion and generated force of the wings of a moth, Mythima separate (Walker),” JSME Int. J. Ser. B 45(4), 836–842 (2002).
[CrossRef]

Nature

R. B. Srygley and A. L. R. Thomas, “Unconventional lift-generating mechanisms in free-flying butterflies,” Nature 420(6916), 660–664 (2002).
[CrossRef] [PubMed]

Opt. Express

Sci. Am.

M. Dickinson, “Solving the mystery of insect flight,” Sci. Am. 284, 34–41 (2001).

Other

J. Yan, R. J. Wood, S. Avadhanula, M. Sitti, and R. S. Fearing, “Towards flapping wing control for a micromechanical flying insect,” in Proceedings of IEEE Conference 4 (IEEE, 2001), pp. 3901- 3908.

S. Avadhanula, R. J. Wood, E. Steltz, J. Yan, and R. S. Fearing, “Lift force improvements for the micromechanical flying insect,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems 2 (IEEE 2003), pp. 1350- 1356.

R. Jones, and C. Wykes, Holographic and Speckle Interferometry (Cambridge Univ. Press, 1989).

K. J. Gasvik, Optical Metrology (John Wiley & Sons, Ltd., 2002).

R. K. Erf, Holographic Nondestructive Testing (Academic Press Inc., 1974).

C. M. Vest, Holographic Interferometry (John Wiley & Sons, 1979).

P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (John Wiley & Sons,Ltd., 2001).

D. L. Grodnitsky, Form and Function of Insect Wings (John Hopkins University, 1999).

R. Dudley, The biomedical of insect flight (Princeton University Press, 2000).

Supplementary Material (3)

» Media 1: AVI (1678 KB)     
» Media 2: AVI (1049 KB)     
» Media 3: AVI (918 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic view of the experimental set up where a high speed camera is used (HS-CMOS).

Fig. 2
Fig. 2

White light image of the butterfly.

Fig. 3
Fig. 3

(a), (b), (c) and (d) (Media 1) show butterfly wing wrapped phase maps during several moments, no specific ones, through flapping motion.

Fig. 4
Fig. 4

(a), (b), (c) (Media 2) and (d) (Media 3) represents butterfly wing surface deformation recovered from DHI measuring experiments. The media files show different moments of the flapping during the test and as such are showing a movie of different unwrapped sates.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = | R ( x , y ) | 2 + | U ( x , y ) | 2 + R ( x , y ) U * ( x , y ) + R * ( x , y ) U ( x , y )
Δ ϕ n = arctan { Re [ I n 1 ] Im [ I n ] Im [ I n 1 ] Re [ I n ] Im [ I n 1 ] Re [ I n ] + Re [ I n 1 ] Im [ I n ] }

Metrics