S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi., A Appl. Mater. Sci. 205(4), 743–747 (2008).

[CrossRef]

K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photonics 1(4), 228–231 (2007).

[CrossRef]

A. De Martino, S. Ben Hatit, and M. Foldyna, “Mueller polarimetry in the back focal plane,” Proc. SPIE 6518, 65180X (2007).

[CrossRef]

D. McGloin, “Optical tweezers: 20years on,” Philos. Trans. R. Soc. Lond. A 364(1849), 3521–3537 (2006).

[CrossRef]

V. Delaubert, N. Treps, G. Bo, and C. Fabre, “Optical storage of high-density information beyond the diffraction limit: A quantum study,” Phys. Rev. A 73(1), 013820 (2006).

[CrossRef]

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).

[CrossRef]

D. Lara and C. Dainty, “Axially resolved complete mueller matrix confocal microscopy,” Appl. Opt. 45(9), 1917–1930 (2006).

[CrossRef]
[PubMed]

Q. Zhan and J. R. Leger, “Measurement of surface features beyond the diffraction limit with an imaging ellipsometer,” Opt. Lett. 27(10), 821–823 (2002).

[CrossRef]

R. L. Eriksen, V. R. Daria, and J. Gluckstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).

[PubMed]

J. M. Brok and H. P. Urbach, “Simulation of polarization effects in diffraction problems of optical recording,” J. Mod. Opt. 49(11), 1811–1829 (2002).

[CrossRef]

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995).

[CrossRef]

P. Török, P. Varga, and G. Né́meth, “Analytical solution of the diffraction integrals and interpretation of wavefront distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12(12), 2660–2671 (1995).

[CrossRef]

R. Kant, “An analytical solution of vector diffraction for focusing optical systems with Seidel aberrations I. Spherical aberration, curvature of field, and distortion,” J. Mod. Opt. 40(11), 2293–2310 (1993).

[CrossRef]

W. S. Bickel and W. M. Bailey, “Stokes vectors, Mueller matrices and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).

[CrossRef]

C. J. R. Sheppard and T. Wilson, “The Image of a Single Point in Microscopes of Large Numerical Aperture,” Proc. R. Soc. Lond. A Math. Phys. Sci. 379(1776), 145–158 (1982).

[CrossRef]

E. Wolf and Y. Li, “Conditions for the validity of the Debye integral representation of focused fields,” Opt. Commun. 39(4), 205–210 (1981).

[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).

[CrossRef]

W. S. Bickel and W. M. Bailey, “Stokes vectors, Mueller matrices and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).

[CrossRef]

S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi., A Appl. Mater. Sci. 205(4), 743–747 (2008).

[CrossRef]

A. De Martino, S. Ben Hatit, and M. Foldyna, “Mueller polarimetry in the back focal plane,” Proc. SPIE 6518, 65180X (2007).

[CrossRef]

W. S. Bickel and W. M. Bailey, “Stokes vectors, Mueller matrices and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).

[CrossRef]

V. Delaubert, N. Treps, G. Bo, and C. Fabre, “Optical storage of high-density information beyond the diffraction limit: A quantum study,” Phys. Rev. A 73(1), 013820 (2006).

[CrossRef]

J. M. Brok and H. P. Urbach, “Simulation of polarization effects in diffraction problems of optical recording,” J. Mod. Opt. 49(11), 1811–1829 (2002).

[CrossRef]

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).

[CrossRef]

S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi., A Appl. Mater. Sci. 205(4), 743–747 (2008).

[CrossRef]

A. De Martino, S. Ben Hatit, and M. Foldyna, “Mueller polarimetry in the back focal plane,” Proc. SPIE 6518, 65180X (2007).

[CrossRef]

A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).

[CrossRef]
[PubMed]

V. Delaubert, N. Treps, G. Bo, and C. Fabre, “Optical storage of high-density information beyond the diffraction limit: A quantum study,” Phys. Rev. A 73(1), 013820 (2006).

[CrossRef]

S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi., A Appl. Mater. Sci. 205(4), 743–747 (2008).

[CrossRef]

A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).

[CrossRef]
[PubMed]

E. Compain, S. Poirier, and B. Drévillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and mueller-matrix ellipsometers,” Appl. Opt. 38(16), 3490–3502 (1999).

[CrossRef]

V. Delaubert, N. Treps, G. Bo, and C. Fabre, “Optical storage of high-density information beyond the diffraction limit: A quantum study,” Phys. Rev. A 73(1), 013820 (2006).

[CrossRef]

S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi., A Appl. Mater. Sci. 205(4), 743–747 (2008).

[CrossRef]

A. De Martino, S. Ben Hatit, and M. Foldyna, “Mueller polarimetry in the back focal plane,” Proc. SPIE 6518, 65180X (2007).

[CrossRef]

K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photonics 1(4), 228–231 (2007).

[CrossRef]

K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photonics 1(4), 228–231 (2007).

[CrossRef]

R. Kant, “An analytical solution of vector diffraction for focusing optical systems with Seidel aberrations I. Spherical aberration, curvature of field, and distortion,” J. Mod. Opt. 40(11), 2293–2310 (1993).

[CrossRef]

F. Kulzer and M. Orrit, “Single-molecule optics,” Annu. Rev. Phys. Chem. 55(1), 585–611 (2004).

[CrossRef]
[PubMed]

E. Wolf and Y. Li, “Conditions for the validity of the Debye integral representation of focused fields,” Opt. Commun. 39(4), 205–210 (1981).

[CrossRef]

K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photonics 1(4), 228–231 (2007).

[CrossRef]

D. McGloin, “Optical tweezers: 20years on,” Philos. Trans. R. Soc. Lond. A 364(1849), 3521–3537 (2006).

[CrossRef]

F. Kulzer and M. Orrit, “Single-molecule optics,” Annu. Rev. Phys. Chem. 55(1), 585–611 (2004).

[CrossRef]
[PubMed]

K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photonics 1(4), 228–231 (2007).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).

[CrossRef]

K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photonics 1(4), 228–231 (2007).

[CrossRef]

C. J. R. Sheppard and T. Wilson, “The Image of a Single Point in Microscopes of Large Numerical Aperture,” Proc. R. Soc. Lond. A Math. Phys. Sci. 379(1776), 145–158 (1982).

[CrossRef]

K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photonics 1(4), 228–231 (2007).

[CrossRef]

P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004).

[CrossRef]
[PubMed]

P. Török and M. Gu, “High-numerical-aperture optical microscopy and modern applications: introduction to the feature issue,” Appl. Opt. 39(34), 6277–6278 (2000).

[CrossRef]

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995).

[CrossRef]

P. Török, P. Varga, and G. Né́meth, “Analytical solution of the diffraction integrals and interpretation of wavefront distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12(12), 2660–2671 (1995).

[CrossRef]

V. Delaubert, N. Treps, G. Bo, and C. Fabre, “Optical storage of high-density information beyond the diffraction limit: A quantum study,” Phys. Rev. A 73(1), 013820 (2006).

[CrossRef]

J. M. Brok and H. P. Urbach, “Simulation of polarization effects in diffraction problems of optical recording,” J. Mod. Opt. 49(11), 1811–1829 (2002).

[CrossRef]

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995).

[CrossRef]

P. Török, P. Varga, and G. Né́meth, “Analytical solution of the diffraction integrals and interpretation of wavefront distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12(12), 2660–2671 (1995).

[CrossRef]

C. J. R. Sheppard and T. Wilson, “The Image of a Single Point in Microscopes of Large Numerical Aperture,” Proc. R. Soc. Lond. A Math. Phys. Sci. 379(1776), 145–158 (1982).

[CrossRef]

E. Wolf and Y. Li, “Conditions for the validity of the Debye integral representation of focused fields,” Opt. Commun. 39(4), 205–210 (1981).

[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).

[CrossRef]

W. S. Bickel and W. M. Bailey, “Stokes vectors, Mueller matrices and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).

[CrossRef]

F. Kulzer and M. Orrit, “Single-molecule optics,” Annu. Rev. Phys. Chem. 55(1), 585–611 (2004).

[CrossRef]
[PubMed]

F. Delplancke, “Automated high-speed Mueller matrix scatterometer,” Appl. Opt. 36(22), 5388–5395 (1997).

[CrossRef]
[PubMed]

E. Compain, S. Poirier, and B. Drévillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and mueller-matrix ellipsometers,” Appl. Opt. 38(16), 3490–3502 (1999).

[CrossRef]

P. Török and M. Gu, “High-numerical-aperture optical microscopy and modern applications: introduction to the feature issue,” Appl. Opt. 39(34), 6277–6278 (2000).

[CrossRef]

D. Lara and C. Dainty, “Axially resolved complete mueller matrix confocal microscopy,” Appl. Opt. 45(9), 1917–1930 (2006).

[CrossRef]
[PubMed]

R. Kant, “An analytical solution of vector diffraction for focusing optical systems with Seidel aberrations I. Spherical aberration, curvature of field, and distortion,” J. Mod. Opt. 40(11), 2293–2310 (1993).

[CrossRef]

J. M. Brok and H. P. Urbach, “Simulation of polarization effects in diffraction problems of optical recording,” J. Mod. Opt. 49(11), 1811–1829 (2002).

[CrossRef]

A. Rohrbach and E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” J. Opt. Soc. Am. A 18(4), 839–853 (2001).

[CrossRef]

H. Ling and S. W. Lee, “Focusing of electromagnetic waves through a dielectric interface,” J. Opt. Soc. Am. A 1(9), 965–973 (1984).

[CrossRef]

M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives,” J. Opt. Soc. Am. A 3(12), 2086–2093 (1986).

[CrossRef]

P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995).

[CrossRef]

P. Török, P. Varga, and G. Né́meth, “Analytical solution of the diffraction integrals and interpretation of wavefront distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12(12), 2660–2671 (1995).

[CrossRef]

K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photonics 1(4), 228–231 (2007).

[CrossRef]

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).

[CrossRef]

E. Wolf and Y. Li, “Conditions for the validity of the Debye integral representation of focused fields,” Opt. Commun. 39(4), 205–210 (1981).

[CrossRef]

D. P. Biss and T. G. Brown, “Primary aberrations in focused radially polarized vortex beams,” Opt. Express 12(3), 384–393 (2004).

[CrossRef]
[PubMed]

P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004).

[CrossRef]
[PubMed]

R. L. Eriksen, V. R. Daria, and J. Gluckstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).

[PubMed]

A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).

[CrossRef]
[PubMed]

Q. Zhan and J. R. Leger, “Measurement of surface features beyond the diffraction limit with an imaging ellipsometer,” Opt. Lett. 27(10), 821–823 (2002).

[CrossRef]

J. T. Fourkas, “Rapid determination of the three-dimensional orientation of single molecules,” Opt. Lett. 26(4), 211–213 (2001).

[CrossRef]

D. McGloin, “Optical tweezers: 20years on,” Philos. Trans. R. Soc. Lond. A 364(1849), 3521–3537 (2006).

[CrossRef]

V. Delaubert, N. Treps, G. Bo, and C. Fabre, “Optical storage of high-density information beyond the diffraction limit: A quantum study,” Phys. Rev. A 73(1), 013820 (2006).

[CrossRef]

S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi., A Appl. Mater. Sci. 205(4), 743–747 (2008).

[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).

[CrossRef]

C. J. R. Sheppard and T. Wilson, “The Image of a Single Point in Microscopes of Large Numerical Aperture,” Proc. R. Soc. Lond. A Math. Phys. Sci. 379(1776), 145–158 (1982).

[CrossRef]

A. De Martino, S. Ben Hatit, and M. Foldyna, “Mueller polarimetry in the back focal plane,” Proc. SPIE 6518, 65180X (2007).

[CrossRef]

K.-H. Shuster, “Radial polarization - rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement”, US Patent 6191880B1 (2001).

In the figure, the dashed lines box represents a part of the experimental setup that is orthogonal to the plane of the optical bench.

To speed-up the calibration of the system, and reduce the noise in the measurements, we applied a 4 × 4 binning to the original 1024 × 768 pixel images. This reduced the time spent in the calibration from ~6 hours to ~30 minutes and increased the pixel alignment accuracy. The same binning was applied to all our experimental data.

The Mueller matrices presented in this section were obtained from the average of 25 measurements, for each combination polarizer-analyzer, to minimize the effect of statistical errors.

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1999).

The results for the gold nano-sphere were obtained as the average of 5 measurements for each combination polarizer-analyzer to minimize the effect of statistical errors.

This approximation is commonly used in the analysis of the image formation of a point-scatterer.