Abstract

A snapshot multi-spectral imaging technique is described which employs multiple cascaded birefringent interferometers to simultaneously spectrally filter and demultiplex multiple spectral images onto a single detector array. Spectral images are recorded directly without the need for inversion and without rejection of light and so the technique offers the potential for high signal-to-noise ratio. An example of an eight-band multi-spectral movie sequence is presented; we believe this is the first such demonstration of a technique able to record multi-spectral movie sequences without the need for computer reconstruction.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Harvey, J. E. Beale, A. H. Greenaway, T. J. Hanlon, and J. W. Williams, “Technology options for hyperspectral imaging,” Proc. SPIE 4132, 13–24 (2000).
    [CrossRef]
  2. L. L. Thompson, “Remote sensing using solid-state array technology,” Photogramm. Eng. 45, 47–55 (1979).
  3. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41(10), 2532–2548 (2002).
    [CrossRef]
  4. A. R. Harvey and D. W. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express 12(22), 5368–5374 (2004).
    [CrossRef] [PubMed]
  5. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” EBS Letters 546, 87–93 (2003).
  6. M. Rast and J. L. Bezy, “The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sens. 20(9), 1681–1702 (1999).
    [CrossRef]
  7. Y. R. Chen, K. Chao, and M. S. Kim, “Machine vision technology for agricultural applications,” Comput. Electron. Agric. 36(2-3), 173–191 (2002).
    [CrossRef]
  8. D. L. Farkas and D. Becker, “Applications of spectral imaging: detection and analysis of human melanoma and its precursors,” Pigment Cell Res. 14(1), 2–8 (2001).
    [CrossRef] [PubMed]
  9. J. Hunicz, and D. Piernikarski, “Investigation of combustion in a gasoline engine using spectrophotometric methods”, Optoelectronic and Electronic Sensors IV Proc. SPIE 4516, 307–314 (2001).
  10. P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B-Photo. 53(Issue 4), 260–264 (1991).
    [CrossRef]
  11. I. Alabboud, G. Muyo, A. Gorman, D. Mordant, A. McNaught, C. Petres, Y. R. Petillot, and A. R. Harvey, “New spectral imaging techniques for blood oximetry in the retina”, Proc. SPIE 6631, 6631–0L-1–10 (2007).
  12. K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt. 9(3), 568–577 (2004).
    [CrossRef] [PubMed]
  13. J. Karlholm and I. Renhorn, “Wavelength band selection method for multispectral target detection,” Appl. Opt. 41(32), 6786–6795 (2002).
    [CrossRef] [PubMed]
  14. L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, and L. E. Tacconi Garman, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
    [CrossRef]
  15. D. W. Fletcher-Holmes and A. R. Harvey, “Spectral imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt. 7(6), S298–S302 (2005).
    [CrossRef]
  16. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker, “Demonstration of a high-speed nonscanning imaging spectrometer,” Opt. Lett. 22(16), 1271–1273 (1997).
    [CrossRef] [PubMed]
  17. W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot Hyperspectral Imaging in Ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
    [CrossRef] [PubMed]
  18. B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris) 7, 32 (1944).
  19. G. Backus and F. Gilbert, “The resolving power of gross Earth data,” Geophys. J. Int. 16(2), 169–205 (1968).
    [CrossRef]
  20. G. Muyo, I. Alabboud, A. Gorman, D. Mordant, I. McNaught, and A. R. Harvey, “Snapshot retinal oximetry”, To be submitted to Optics Express (2010).
  21. Jet Propulsion Laboratory, University of California, http://speclib.jpl.nasa.gov/

2007

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot Hyperspectral Imaging in Ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[CrossRef] [PubMed]

2005

D. W. Fletcher-Holmes and A. R. Harvey, “Spectral imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt. 7(6), S298–S302 (2005).
[CrossRef]

2004

A. R. Harvey and D. W. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express 12(22), 5368–5374 (2004).
[CrossRef] [PubMed]

K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt. 9(3), 568–577 (2004).
[CrossRef] [PubMed]

2003

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” EBS Letters 546, 87–93 (2003).

2002

J. Karlholm and I. Renhorn, “Wavelength band selection method for multispectral target detection,” Appl. Opt. 41(32), 6786–6795 (2002).
[CrossRef] [PubMed]

Y. R. Chen, K. Chao, and M. S. Kim, “Machine vision technology for agricultural applications,” Comput. Electron. Agric. 36(2-3), 173–191 (2002).
[CrossRef]

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41(10), 2532–2548 (2002).
[CrossRef]

2001

D. L. Farkas and D. Becker, “Applications of spectral imaging: detection and analysis of human melanoma and its precursors,” Pigment Cell Res. 14(1), 2–8 (2001).
[CrossRef] [PubMed]

2000

A. R. Harvey, J. E. Beale, A. H. Greenaway, T. J. Hanlon, and J. W. Williams, “Technology options for hyperspectral imaging,” Proc. SPIE 4132, 13–24 (2000).
[CrossRef]

1999

M. Rast and J. L. Bezy, “The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sens. 20(9), 1681–1702 (1999).
[CrossRef]

1997

1996

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, and L. E. Tacconi Garman, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

1991

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B-Photo. 53(Issue 4), 260–264 (1991).
[CrossRef]

1979

L. L. Thompson, “Remote sensing using solid-state array technology,” Photogramm. Eng. 45, 47–55 (1979).

1968

G. Backus and F. Gilbert, “The resolving power of gross Earth data,” Geophys. J. Int. 16(2), 169–205 (1968).
[CrossRef]

1944

B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris) 7, 32 (1944).

Andersson-Engels, S.

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B-Photo. 53(Issue 4), 260–264 (1991).
[CrossRef]

Backus, G.

G. Backus and F. Gilbert, “The resolving power of gross Earth data,” Geophys. J. Int. 16(2), 169–205 (1968).
[CrossRef]

Beale, J. E.

A. R. Harvey, J. E. Beale, A. H. Greenaway, T. J. Hanlon, and J. W. Williams, “Technology options for hyperspectral imaging,” Proc. SPIE 4132, 13–24 (2000).
[CrossRef]

Bearman, G.

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot Hyperspectral Imaging in Ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[CrossRef] [PubMed]

Becker, D.

D. L. Farkas and D. Becker, “Applications of spectral imaging: detection and analysis of human melanoma and its precursors,” Pigment Cell Res. 14(1), 2–8 (2001).
[CrossRef] [PubMed]

Bezy, J. L.

M. Rast and J. L. Bezy, “The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sens. 20(9), 1681–1702 (1999).
[CrossRef]

Brettel, H.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41(10), 2532–2548 (2002).
[CrossRef]

Cameron, M.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, and L. E. Tacconi Garman, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Chao, K.

Y. R. Chen, K. Chao, and M. S. Kim, “Machine vision technology for agricultural applications,” Comput. Electron. Agric. 36(2-3), 173–191 (2002).
[CrossRef]

Chen, Y. R.

Y. R. Chen, K. Chao, and M. S. Kim, “Machine vision technology for agricultural applications,” Comput. Electron. Agric. 36(2-3), 173–191 (2002).
[CrossRef]

Dereniak, E. L.

Descour, M. R.

Endo, T.

K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt. 9(3), 568–577 (2004).
[CrossRef] [PubMed]

Farkas, D. L.

D. L. Farkas and D. Becker, “Applications of spectral imaging: detection and analysis of human melanoma and its precursors,” Pigment Cell Res. 14(1), 2–8 (2001).
[CrossRef] [PubMed]

Fink, W.

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot Hyperspectral Imaging in Ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[CrossRef] [PubMed]

Fletcher-Holmes, D. W.

D. W. Fletcher-Holmes and A. R. Harvey, “Spectral imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt. 7(6), S298–S302 (2005).
[CrossRef]

A. R. Harvey and D. W. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express 12(22), 5368–5374 (2004).
[CrossRef] [PubMed]

Genzel, R.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, and L. E. Tacconi Garman, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Gilbert, F.

G. Backus and F. Gilbert, “The resolving power of gross Earth data,” Geophys. J. Int. 16(2), 169–205 (1968).
[CrossRef]

Gono, K.

K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt. 9(3), 568–577 (2004).
[CrossRef] [PubMed]

Greenaway, A. H.

A. R. Harvey, J. E. Beale, A. H. Greenaway, T. J. Hanlon, and J. W. Williams, “Technology options for hyperspectral imaging,” Proc. SPIE 4132, 13–24 (2000).
[CrossRef]

Hamamoto, Y.

K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt. 9(3), 568–577 (2004).
[CrossRef] [PubMed]

Hanlon, T. J.

A. R. Harvey, J. E. Beale, A. H. Greenaway, T. J. Hanlon, and J. W. Williams, “Technology options for hyperspectral imaging,” Proc. SPIE 4132, 13–24 (2000).
[CrossRef]

Hardeberg, J. Y.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41(10), 2532–2548 (2002).
[CrossRef]

Harvey, A. R.

D. W. Fletcher-Holmes and A. R. Harvey, “Spectral imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt. 7(6), S298–S302 (2005).
[CrossRef]

A. R. Harvey and D. W. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express 12(22), 5368–5374 (2004).
[CrossRef] [PubMed]

A. R. Harvey, J. E. Beale, A. H. Greenaway, T. J. Hanlon, and J. W. Williams, “Technology options for hyperspectral imaging,” Proc. SPIE 4132, 13–24 (2000).
[CrossRef]

Humayun, M.

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot Hyperspectral Imaging in Ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[CrossRef] [PubMed]

Johnson, W. R.

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot Hyperspectral Imaging in Ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[CrossRef] [PubMed]

Karlholm, J.

Kauranen, P.

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B-Photo. 53(Issue 4), 260–264 (1991).
[CrossRef]

Kim, M. S.

Y. R. Chen, K. Chao, and M. S. Kim, “Machine vision technology for agricultural applications,” Comput. Electron. Agric. 36(2-3), 173–191 (2002).
[CrossRef]

Krabbe, A.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, and L. E. Tacconi Garman, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Kroker, H.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, and L. E. Tacconi Garman, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Lyot, B.

B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris) 7, 32 (1944).

Machida, H.

K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt. 9(3), 568–577 (2004).
[CrossRef] [PubMed]

Maker, P. D.

Obi, T.

K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt. 9(3), 568–577 (2004).
[CrossRef] [PubMed]

Ohyama, N.

K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt. 9(3), 568–577 (2004).
[CrossRef] [PubMed]

Pepperkok, R.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” EBS Letters 546, 87–93 (2003).

Rast, M.

M. Rast and J. L. Bezy, “The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sens. 20(9), 1681–1702 (1999).
[CrossRef]

Renhorn, I.

Rietdorf, J.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” EBS Letters 546, 87–93 (2003).

Sano, Y.

K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt. 9(3), 568–577 (2004).
[CrossRef] [PubMed]

Schmitt, F.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41(10), 2532–2548 (2002).
[CrossRef]

Schumacher, A. B.

Svanberg, S.

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B-Photo. 53(Issue 4), 260–264 (1991).
[CrossRef]

Tacconi Garman, L. E.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, and L. E. Tacconi Garman, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Tacconi-Garman, L. E.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, and L. E. Tacconi Garman, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Thatte, N.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, and L. E. Tacconi Garman, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Thome, K. J.

Thompson, L. L.

L. L. Thompson, “Remote sensing using solid-state array technology,” Photogramm. Eng. 45, 47–55 (1979).

Volin, C. E.

Weitzel, L.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, and L. E. Tacconi Garman, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Williams, J. W.

A. R. Harvey, J. E. Beale, A. H. Greenaway, T. J. Hanlon, and J. W. Williams, “Technology options for hyperspectral imaging,” Proc. SPIE 4132, 13–24 (2000).
[CrossRef]

Wilson, D. W.

Yamaguchi, M.

K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt. 9(3), 568–577 (2004).
[CrossRef] [PubMed]

Yoshida, S.

K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt. 9(3), 568–577 (2004).
[CrossRef] [PubMed]

Zimmermann, T.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” EBS Letters 546, 87–93 (2003).

Ann. Astrophys. (Paris)

B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris) 7, 32 (1944).

Appl. Opt.

Appl. Phys. B-Photo.

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B-Photo. 53(Issue 4), 260–264 (1991).
[CrossRef]

Astron. Astrophys. Suppl. Ser.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, and L. E. Tacconi Garman, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Comput. Electron. Agric.

Y. R. Chen, K. Chao, and M. S. Kim, “Machine vision technology for agricultural applications,” Comput. Electron. Agric. 36(2-3), 173–191 (2002).
[CrossRef]

EBS Letters

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” EBS Letters 546, 87–93 (2003).

Geophys. J. Int.

G. Backus and F. Gilbert, “The resolving power of gross Earth data,” Geophys. J. Int. 16(2), 169–205 (1968).
[CrossRef]

Int. J. Remote Sens.

M. Rast and J. L. Bezy, “The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sens. 20(9), 1681–1702 (1999).
[CrossRef]

J. Biomed. Opt.

K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt. 9(3), 568–577 (2004).
[CrossRef] [PubMed]

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot Hyperspectral Imaging in Ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt.

D. W. Fletcher-Holmes and A. R. Harvey, “Spectral imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt. 7(6), S298–S302 (2005).
[CrossRef]

Opt. Eng.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41(10), 2532–2548 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Photogramm. Eng.

L. L. Thompson, “Remote sensing using solid-state array technology,” Photogramm. Eng. 45, 47–55 (1979).

Pigment Cell Res.

D. L. Farkas and D. Becker, “Applications of spectral imaging: detection and analysis of human melanoma and its precursors,” Pigment Cell Res. 14(1), 2–8 (2001).
[CrossRef] [PubMed]

Proc. SPIE

A. R. Harvey, J. E. Beale, A. H. Greenaway, T. J. Hanlon, and J. W. Williams, “Technology options for hyperspectral imaging,” Proc. SPIE 4132, 13–24 (2000).
[CrossRef]

Other

J. Hunicz, and D. Piernikarski, “Investigation of combustion in a gasoline engine using spectrophotometric methods”, Optoelectronic and Electronic Sensors IV Proc. SPIE 4516, 307–314 (2001).

I. Alabboud, G. Muyo, A. Gorman, D. Mordant, A. McNaught, C. Petres, Y. R. Petillot, and A. R. Harvey, “New spectral imaging techniques for blood oximetry in the retina”, Proc. SPIE 6631, 6631–0L-1–10 (2007).

G. Muyo, I. Alabboud, A. Gorman, D. Mordant, I. McNaught, and A. R. Harvey, “Snapshot retinal oximetry”, To be submitted to Optics Express (2010).

Jet Propulsion Laboratory, University of California, http://speclib.jpl.nasa.gov/

Supplementary Material (1)

» Media 1: AVI (1929 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the demultiplexer splitting and filtering operation for an on-axis ray, for a four-channel system with the associated spectral transmission functions. The solid lines show the filter functions for each stage and the dashed lines in the dashed plots show the resultant, filter functions.

Fig. 2
Fig. 2

(a) Calculated (dashed line) and measured optimized transmission bands for an eight-band BSD and (b) Impulse response at peak wavelengths following Backus-Gilbert inversion.

Fig. 3
Fig. 3

(a) Diagram and (b) photograph of an eight-band image-replicating imaging spectrometer.

Fig. 4
Fig. 4

(a) Images of a linearly variable interference filter recorded with the IRIS shown in Fig. 3(b) with superimposed intensity profiles. (b) A frame from a video sequence of a flame test for the chemicals: Cu2O, CuSO4, Li2SO4, Na2CO3 and Na2B4O7., the peak wavelength for the each band is shown in the top left-hand corner of each sub-image (Media 1).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ˜ = [ T ( k , t ) , T ( k , t ) ] = [ cos 2 b t k / 2 , sin 2 b t k / 2 ]
T ˜ p ( k ) = i = 1 N T p i ( k , t i ) ,
T ˜ = [ T ˜ , , ( k ) T ˜ , , ( k ) T ˜ , , ( k ) T ˜ , , ( k ) T ˜ , , ( k ) T ˜ , , ( k ) T ˜ , , ( k ) T ˜ , , ( k ) ] = [ cos 2 ( b 1 t 1 k / 2 ) cos 2 ( b 2 t 2 k / 2 ) cos 2 ( b 3 t 3 k / 2 ) cos 2 ( b 1 t 1 k / 2 ) cos 2 ( b 2 t 2 k / 2 ) sin 2 ( b 3 t 3 k / 2 ) cos 2 ( b 1 t 1 k / 2 ) sin 2 ( b 2 t 2 k / 2 ) cos 2 ( b 3 t 3 k / 2 ) cos 2 ( b 1 t 1 k / 2 ) sin 2 ( b 2 t 2 k / 2 ) sin 2 ( b 3 t 3 k / 2 ) sin 2 ( b 1 t 1 k / 2 ) cos 2 ( b 2 t 2 k / 2 ) cos 2 ( b 3 t 3 k / 2 ) sin 2 ( b 1 t 1 k / 2 ) cos 2 ( b 2 t 2 k / 2 ) sin 2 ( b 3 t 3 k / 2 ) sin 2 ( b 1 t 1 k / 2 ) sin 2 ( b 2 t 2 k / 2 ) cos 2 ( b 3 t 3 k / 2 ) sin 2 ( b 1 t 1 k / 2 ) sin 2 ( b 2 t 2 k / 2 ) sin 2 ( b 3 t 3 k / 2 ) ]

Metrics