Abstract

We exploit a fiber puller to transform a telecom single-mode optical fiber with a 125 µm diameter into a symmetric and unbroken slightly tapered optical fiber with a 50 µm diameter at the minimum waist. When the laser light is launched into the optical fiber, we can observe that, due to the evanescent wave of the slightly tapered fiber, the nearby polystyrene microparticles with 10 µm diameters will be attracted onto the fiber surface and roll separately in the direction of light propagation. We have also simulated and compared the optical propulsion effects on the microparticles when the laser light is launched into a slightly tapered fiber and a heavily tapered (subwavelength) fiber, respectively.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17(11), 772–774 (1992).
    [CrossRef] [PubMed]
  3. B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
    [CrossRef] [PubMed]
  4. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [CrossRef] [PubMed]
  5. B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
    [CrossRef]
  6. G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32(20), 3041–3043 (2007).
    [CrossRef] [PubMed]
  7. G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical Propulsion of Individual and Clustered Microspheres along Sub-Micron Optical Wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
    [CrossRef]

2009

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

2008

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical Propulsion of Individual and Clustered Microspheres along Sub-Micron Optical Wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
[CrossRef]

2007

1992

1970

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Ahluwalia, B. S.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

Ashkin, A.

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Brambilla, G.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical Propulsion of Individual and Clustered Microspheres along Sub-Micron Optical Wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
[CrossRef]

G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32(20), 3041–3043 (2007).
[CrossRef] [PubMed]

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Hellso, O. G.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

Kawata, S.

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Murugan, G. S.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical Propulsion of Individual and Clustered Microspheres along Sub-Micron Optical Wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
[CrossRef]

G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32(20), 3041–3043 (2007).
[CrossRef] [PubMed]

Perney, N. M. B.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

Richardson, D. J.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical Propulsion of Individual and Clustered Microspheres along Sub-Micron Optical Wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
[CrossRef]

G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32(20), 3041–3043 (2007).
[CrossRef] [PubMed]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Sessions, N. P.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

Subramanian, A. Z.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

Sugiura, T.

Wilkinson, J. S.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical Propulsion of Individual and Clustered Microspheres along Sub-Micron Optical Wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
[CrossRef]

G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32(20), 3041–3043 (2007).
[CrossRef] [PubMed]

Yang, A. H.

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical Propulsion of Individual and Clustered Microspheres along Sub-Micron Optical Wires,” Jpn. J. Appl. Phys. 47(8), 6716–6718 (2008).
[CrossRef]

Nature

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Supplementary Material (2)

» Media 1: MPG (1496 KB)     
» Media 2: MPG (1212 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The observed optical microscopic images of (a) the original telecom single-mode optical fiber (diameter ~125 µm) and (b) the slightly tapered optical fiber (minimum waist diameter ~50 µm). The observed optical patterns of the scattered light around the slightly tapered optical fiber when the fiber output power is (c) 10 mW and (d) 30 mW, respectively.

Fig. 2
Fig. 2

The (a) configuration and (b) photograph of the experimental setup for trapping and propelling microparticles by a slightly tapered optical fiber. MO, microscope objective lens; PC, personal computer; CCD, charge coupled device; LD, laser diode; LED, light emitting diode.

Fig. 3
Fig. 3

The observed microscopic images of the transportation of a single microparticle on the surface of the slightly tapered optical fiber when the fiber output power is 10 mW.

Fig. 4
Fig. 4

The observed microscopic images of the transportation of two separate microparticles on the surface of the slightly tapered optical fiber when the fiber output power is (a)-(b) 10 mW (Media 1), and (c)-(d) 20 mW (Media 2), respectively.

Fig. 5
Fig. 5

Calculated light wave distributions of a slightly tapered optical fiber and a dielectric microparticle as the longitudinal relative position of the microparticle is set at (a) −15 µm, (b) −7 µm, (c) 0 µm, (d) 7 µm, respectively.

Fig. 6
Fig. 6

Calculated light wave distributions of a subwavelength heavily tapered optical fiber and a dielectric microparticle as the longitudinal relative position of the microparticle is set at (a) −7 µm, (b) 0 µm, (c) 7 µm, respectively.

Metrics