Abstract

The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation. Real-time end-to-end transmission of an 11.25Gb/s 64-QAM-encoded OOFDM signal with a high electrical spectral efficiency of 5.625bit/s/Hz over 25km of standard and MetroCor single-mode fibres is successfully achieved with respective power penalties of 0.3dB and −0.2dB at a BER of 1.0 × 10−3 in a directly modulated DFB laser-based intensity modulation and direct detection system without in-line optical amplification and chromatic dispersion compensation. The impacts of variable power loading as well as electrical and optical components on the transmission performance of the demonstrated transceivers are experimentally explored in detail. In addition, numerical simulations also show that variable power loading is an extremely effective means of escalating system performance to its maximum potential.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iwatsuki and J.-I. Kani, “Application and technical issues of wavelength-division multiplexing passive optical networks with colorless optical network units,” J. Opt. Netw. 1(4), C17–C24 (2009).
    [CrossRef]
  2. P. W. Shumate, “Fibre-to-the-home:1997-2007,” J. Lightwave Technol. 26(9), 1093–1103 (2008).
    [CrossRef]
  3. N. E. Jolley, H. Kee, R. Rickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gb/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fibre using a directly modulated DFB,” presented at the Optical Fibre Communication Conf./National Fiber Optic Engineers Conf. (OFC/NFOEC), (OSA, 2005), Paper OFP3.
  4. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [CrossRef]
  5. T.-N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low bandwidth optical devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
    [CrossRef]
  6. J. Yu, Z. Jia, M.-F. Huang, M. Haris, P. N. Ji, T. Wang, and G.-K. Chang, “Applications of 40-Gb/s chirp-managed laser in access and metro networks,” J. Lightwave Technol. 27(3), 253–265 (2009).
    [CrossRef]
  7. F. Buchali, R. Dischler, A. Klekamp, M. Bernhard, and D. Efinger, “Realization of a real-time 12.1 Gb/s optical OFDM transmitter and its application in a 109 Gb/s transmission system with coherent reception,” European Conference on Optical Communication (ECOC), (Vienna, 2009), PD paper 2.1.
  8. Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Puschel, M. Glick, and R. I. Killey, “21.4 GS/s real-time DSP-based optical OFDM signal generation and transmission over 1600km of uncompensated fibre,” European Conference on Optical Communication (ECOC), (Vienna, 2009), PD paper 2.4.
  9. Q. Yang, S. Chen, Y. Ma, and W. Shieh, “Real-time reception of multi-gigabit coherent optical OFDM signals,” Opt. Express 17(10), 7985–7992 (2009).
    [CrossRef] [PubMed]
  10. R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
    [CrossRef]
  11. X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3 Gb/s 16-QAM encoded optical OFDM signals over 75 km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
    [CrossRef] [PubMed]
  12. R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express 17(19), 16654–16665 (2009).
    [CrossRef] [PubMed]
  13. X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express 17(22), 20484–20493 (2009).
    [CrossRef] [PubMed]
  14. R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009).
    [CrossRef] [PubMed]
  15. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Colourless real-time optical OFDM end-to-end transmission at 7.5Gb/s over 25km SSMF using 1GHz RSOAs for WDM-PONs,” Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2010), Paper OMS4.
  16. J. M. Tang, and X. Q. Jin, “Synchronization process in optical frequency division multiplexing transmission systems,” UK patent application no. 0919057.0 (2009).
  17. J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibres,” J. Lightwave Technol. 9, 1315–1324 (2003).
  18. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulated signal over 100km of negative dispersion fibre,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
    [CrossRef]
  19. X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express 16(25), 20427–20440 (2008).
    [CrossRef] [PubMed]
  20. J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
    [CrossRef]
  21. J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
    [CrossRef]
  22. J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
    [CrossRef]
  23. S. C. J. Lee, F. Breyer, S. Randel, R. Gaudino, G. Bosco, A. Bluschke, M. Matthews, P. Rietzsch, R. Steglich, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for maximizing transmission rate in step-index plastic optical fibers,” J. Lightwave Technol. 27(11), 1503–1513 (2009).
    [CrossRef]

2009 (12)

J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
[CrossRef]

T.-N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low bandwidth optical devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

J. Yu, Z. Jia, M.-F. Huang, M. Haris, P. N. Ji, T. Wang, and G.-K. Chang, “Applications of 40-Gb/s chirp-managed laser in access and metro networks,” J. Lightwave Technol. 27(3), 253–265 (2009).
[CrossRef]

Q. Yang, S. Chen, Y. Ma, and W. Shieh, “Real-time reception of multi-gigabit coherent optical OFDM signals,” Opt. Express 17(10), 7985–7992 (2009).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3 Gb/s 16-QAM encoded optical OFDM signals over 75 km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express 17(19), 16654–16665 (2009).
[CrossRef] [PubMed]

X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express 17(22), 20484–20493 (2009).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009).
[CrossRef] [PubMed]

K. Iwatsuki and J.-I. Kani, “Application and technical issues of wavelength-division multiplexing passive optical networks with colorless optical network units,” J. Opt. Netw. 1(4), C17–C24 (2009).
[CrossRef]

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
[CrossRef]

S. C. J. Lee, F. Breyer, S. Randel, R. Gaudino, G. Bosco, A. Bluschke, M. Matthews, P. Rietzsch, R. Steglich, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for maximizing transmission rate in step-index plastic optical fibers,” J. Lightwave Technol. 27(11), 1503–1513 (2009).
[CrossRef]

2008 (2)

2007 (1)

2006 (1)

2003 (1)

J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibres,” J. Lightwave Technol. 9, 1315–1324 (2003).

2001 (1)

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulated signal over 100km of negative dispersion fibre,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Armstrong, J.

Bluschke, A.

Bosco, G.

Boskovic, A.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulated signal over 100km of negative dispersion fibre,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Breyer, F.

Cartaxo, A. V. T.

J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibres,” J. Lightwave Technol. 9, 1315–1324 (2003).

Chanclou, P.

T.-N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low bandwidth optical devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

Chang, G.-K.

Charbonnier, B.

T.-N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low bandwidth optical devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

Chen, S.

Duong, T.-N.

T.-N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low bandwidth optical devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

Gaudino, R.

Genay, N.

T.-N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low bandwidth optical devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

Giddings, R. P.

Hallock, B.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulated signal over 100km of negative dispersion fibre,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Hamié, A.

Haris, M.

Hesse, R.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulated signal over 100km of negative dispersion fibre,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Huang, M.-F.

Hugues-Salas, E.

Iwatsuki, K.

K. Iwatsuki and J.-I. Kani, “Application and technical issues of wavelength-division multiplexing passive optical networks with colorless optical network units,” J. Opt. Netw. 1(4), C17–C24 (2009).
[CrossRef]

Ji, P. N.

Jia, Z.

Jin, X. Q.

Kani, J.-I.

K. Iwatsuki and J.-I. Kani, “Application and technical issues of wavelength-division multiplexing passive optical networks with colorless optical network units,” J. Opt. Netw. 1(4), C17–C24 (2009).
[CrossRef]

Kee, H. H.

R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

Koonen, A. M. J.

Le Masson, J.

T.-N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low bandwidth optical devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

Lee, S. C. J.

Ma, Y.

Matthews, M.

Morgado, J. A. P.

J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibres,” J. Lightwave Technol. 9, 1315–1324 (2003).

Nakano, J.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulated signal over 100km of negative dispersion fibre,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Ouzzif, M.

T.-N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low bandwidth optical devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

Randel, S.

Rietzsch, P.

Roudas, I.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulated signal over 100km of negative dispersion fibre,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Shieh, W.

Shore, K. A.

Shumate, P. W.

Simon, J. C.

T.-N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low bandwidth optical devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

Steglich, R.

Tang, J. M.

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
[CrossRef]

R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express 17(19), 16654–16665 (2009).
[CrossRef] [PubMed]

X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3 Gb/s 16-QAM encoded optical OFDM signals over 75 km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009).
[CrossRef] [PubMed]

X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express 17(22), 20484–20493 (2009).
[CrossRef] [PubMed]

X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express 16(25), 20427–20440 (2008).
[CrossRef] [PubMed]

J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
[CrossRef]

J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[CrossRef]

Tomkos, I.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulated signal over 100km of negative dispersion fibre,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

van den Boom, H. P. A.

Vodhanel, R.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulated signal over 100km of negative dispersion fibre,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Wang, T.

Wei, J. L.

Yang, Q.

Yang, X. L.

R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

Yu, J.

Zheng, X.

Electron. Lett. (1)

R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulated signal over 100km of negative dispersion fibre,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

T.-N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low bandwidth optical devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

J. Lightwave Technol. (8)

J. Yu, Z. Jia, M.-F. Huang, M. Haris, P. N. Ji, T. Wang, and G.-K. Chang, “Applications of 40-Gb/s chirp-managed laser in access and metro networks,” J. Lightwave Technol. 27(3), 253–265 (2009).
[CrossRef]

P. W. Shumate, “Fibre-to-the-home:1997-2007,” J. Lightwave Technol. 26(9), 1093–1103 (2008).
[CrossRef]

J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
[CrossRef]

J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibres,” J. Lightwave Technol. 9, 1315–1324 (2003).

J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[CrossRef]

J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
[CrossRef]

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
[CrossRef]

S. C. J. Lee, F. Breyer, S. Randel, R. Gaudino, G. Bosco, A. Bluschke, M. Matthews, P. Rietzsch, R. Steglich, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for maximizing transmission rate in step-index plastic optical fibers,” J. Lightwave Technol. 27(11), 1503–1513 (2009).
[CrossRef]

J. Opt. Netw. (1)

K. Iwatsuki and J.-I. Kani, “Application and technical issues of wavelength-division multiplexing passive optical networks with colorless optical network units,” J. Opt. Netw. 1(4), C17–C24 (2009).
[CrossRef]

Opt. Express (6)

Other (5)

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Colourless real-time optical OFDM end-to-end transmission at 7.5Gb/s over 25km SSMF using 1GHz RSOAs for WDM-PONs,” Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2010), Paper OMS4.

J. M. Tang, and X. Q. Jin, “Synchronization process in optical frequency division multiplexing transmission systems,” UK patent application no. 0919057.0 (2009).

N. E. Jolley, H. Kee, R. Rickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gb/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fibre using a directly modulated DFB,” presented at the Optical Fibre Communication Conf./National Fiber Optic Engineers Conf. (OFC/NFOEC), (OSA, 2005), Paper OFP3.

F. Buchali, R. Dischler, A. Klekamp, M. Bernhard, and D. Efinger, “Realization of a real-time 12.1 Gb/s optical OFDM transmitter and its application in a 109 Gb/s transmission system with coherent reception,” European Conference on Optical Communication (ECOC), (Vienna, 2009), PD paper 2.1.

Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Puschel, M. Glick, and R. I. Killey, “21.4 GS/s real-time DSP-based optical OFDM signal generation and transmission over 1600km of uncompensated fibre,” European Conference on Optical Communication (ECOC), (Vienna, 2009), PD paper 2.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Real-time FPGA-based OOFDM transceiver architectures and experimental system setup.

Fig. 2
Fig. 2

System frequency responses for various system configurations.

Fig. 3
Fig. 3

Transmitted and received subcarrier power levels for various system configurations.

Fig. 4
Fig. 4

Error distribution across subcarriers for various system configurations when variable power loading is used. For comparisons, the error distribution obtained under equal power loading is also plotted for case IV with a 25km SSMF.

Fig. 5
Fig. 5

Variation of BER with clipping level for an analogue back-to-back configuration (case II) and a 25km SSMF link (case IV).

Fig. 6
Fig. 6

BER performance of real-time 11.25Gb/s 64-QAM-encoded OOFDM signal transmission over 25km SSMF, 25km MetroCor SMF and optical back-to-back link configurations.

Fig. 7
Fig. 7

Received constellations of a single subcarrier before equalisation (a) Digital back-to-back, total channel BER = 0 (b) Analogue back-to-back, total channel BER = 6.0x10−5 (c) Optical back-to-back, total channel BER = 8.0x10−4 (d,e,f) 25km SSMF, total channel BER = 8.5x10−4,(g,h,i) 25km MetroCor SMF, total channel BER = 8.8x10−4.

Fig. 8
Fig. 8

Raw signal line rate versus reach for power loading, bit loading and power & bit loading. SSMFs are considered.

Tables (2)

Tables Icon

Table 1 Transceiver and system parameters

Tables Icon

Table 2 11.25Gb/s real-time OOFDM transceiver performance

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S c l i p ( t ) = { S ( t ) , C S ( t ) C C , S ( t ) > C C , S ( t ) < C
ξ ( d B ) = 10 log 10 [ Λ P m ]
ξ ( d B ) = 10 log 10 C 2 P M ( A G c o m G I F F T ) 2 i = 1 15 P i 2

Metrics