Abstract

Spectral control of the emissivity of surfaces is essential for efficient conversion of solar radiation into heat. We investigated surfaces consisting of sub-wavelength V-groove gratings coated with aperiodic metal-dielectric stacks. The spectral behavior of the coated gratings was modeled using rigorous coupled-wave analysis (RCWA). The proposed absorber coatings combine impedance matching using tapered metallic features with the excellent spectral selectivity of aperiodic metal-dielectric stacks. The aspect ratio of the V-groove can be tailored in order to obtain the desired spectral selectivity over a wide angular range. Coated V-groove gratings with optimal aspect ratio are predicted to have thermal emissivity below 6% at 720K while absorbing >94% of the incident light. These sub-wavelength gratings would have the potential to significantly increase the efficiency of concentrated solar thermal systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Burkholder and C. Kutscher, “Heat-Loss Testing of Solel’s UVAC3 Parabolic Trough Receiver,” NREL/TP-550-42394 (2008).
  2. F. Burkholder and C. Kutscher, “Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver,” NREL/TP-550-45633 (2009).
  3. C.E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials, NREL/TP-520-31267 (2002).
  4. C. E. Kennedy, and H. Price, “Progress in development of high-temperature solar-selective coatings,” NREL/CP-520-36997 Proc. ISEC2005 2005 International Solar Energy Conference August 6-12, 2005, Orlando, Florida USA, ISEC2005-76039
  5. Q.-C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys. 72(7), 3013 (1992).
    [CrossRef]
  6. R. N. Schmidt and K. C. Park, “High-Temperature Space-Stable Selective Solar Absorber Coatings,” Appl. Opt. 4(8), 917–925 (1965).
    [CrossRef]
  7. I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29(8), 863–865 (2004).
    [CrossRef] [PubMed]
  8. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
    [CrossRef]
  9. C. E. Kennedy, “Progress to develop an advanced solar-selective coating,” 14th Biennial CSP SolarPACES Symposium, NREL/CD-550-42709 (2008)
  10. X.-F. Li, Y.-R. Chen, J. Miao, P. Zhou, Y.-X. Zheng, L.-Y. Chen, and Y. P. Lee, “High solar absorption of a multilayered thin film structure,” Opt. Express 15(4), 1907–1912 (2007).
    [CrossRef] [PubMed]
  11. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
    [CrossRef]
  12. A. Narayanaswamy, J. Cybulksi, and G. Chen, “1D Metallo-Dielectric Photonic Crystals as Selective Emitters for Thermophotovoltaic Applications,” Thermophotovoltaic Generation of Electricity, Sixth Conference, CP738, 215 (2004)
  13. C. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
    [CrossRef]
  14. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006).
    [CrossRef] [PubMed]
  15. Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
    [CrossRef]
  16. H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
    [CrossRef]
  17. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [CrossRef]
  18. J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009).
    [CrossRef]
  19. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
    [CrossRef] [PubMed]
  20. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
    [CrossRef]
  21. H. Sai, Y. Kanamori, K. Hane, H. Yugami, and M. Yamaguchi, “Numerical study on tungsten selective radiators with various micro/nano structures,” Photovoltaic Specialists Conference, 2005. IEEE, 762-765 (2005)
  22. H. Sai, H. Yugami, Y. Akiyama, Y. Kanamori, and K. Hane, “Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region,” J. Opt. Soc. Am. A 18(7), 1471–1476 (2001).
    [CrossRef]
  23. C.-F. Lin, C.-H. Chao, L. A. Wang, and W.-C. Cheng, “Blackbody radiation modified to enhance blue spectrum,” J. Opt. Soc. Am. B 22(7), 1517 (2005).
    [CrossRef]
  24. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003).
    [CrossRef]
  25. T. Trupke, P. Wurfel, and M. A. Green, “Comment on Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 84(11), 1997 (2004).
    [CrossRef]
  26. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
    [CrossRef] [PubMed]
  27. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
    [CrossRef]
  28. O. Pincon, M. Agrawal, and P. Peumans, “Aperiodic metallodielectric stacks for thermophotovoltaic applications,” submitted.
  29. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
    [CrossRef]
  30. P. Yeh, Optical waves in layered media, (John Wiley & Sons, Inc., New Jersey, 1998)
  31. E. B. Palik, Handbook of Optical Constants, (Academic Press, New York, 1985)
  32. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27(6), 1203 (1988).
    [CrossRef] [PubMed]
  33. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (John Wiley & Sons, New Jersey, 2007)
  34. S. A. Furman, A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Frontieres, Gif-sur-Yvette, 1992).
  35. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493 (1996).
    [CrossRef] [PubMed]
  36. B. T. Sullivan and J. A. Dobrowolski, “Implementation of a numerical needle method for thin-film design,” Appl. Opt. 35(28), 5484 (1996).
    [CrossRef] [PubMed]
  37. T. Karabacak, J. S. DeLuca, P.-I. Wang, G. A. Ten Eyck, D. Ye, G.-C. Wang, and T.-M. Lu, “Low temperature melting of copper nanorod arrays,” J. Appl. Phys. 99(6), 064304 (2006).
    [CrossRef]
  38. C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters, CP653, Thermophotovoltaics Generation of Electricity: 5th Conference, 164 (2003)
  39. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  40. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [CrossRef]

2009 (3)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009).
[CrossRef]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
[CrossRef]

2008 (1)

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

2007 (2)

2006 (3)

D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
[CrossRef] [PubMed]

T. Karabacak, J. S. DeLuca, P.-I. Wang, G. A. Ten Eyck, D. Ye, G.-C. Wang, and T.-M. Lu, “Low temperature melting of copper nanorod arrays,” J. Appl. Phys. 99(6), 064304 (2006).
[CrossRef]

D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (5)

I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29(8), 863–865 (2004).
[CrossRef] [PubMed]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[CrossRef]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
[CrossRef]

T. Trupke, P. Wurfel, and M. A. Green, “Comment on Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 84(11), 1997 (2004).
[CrossRef]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[CrossRef] [PubMed]

2003 (1)

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003).
[CrossRef]

2001 (1)

1999 (1)

C. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[CrossRef]

1996 (2)

1995 (2)

1992 (1)

Q.-C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys. 72(7), 3013 (1992).
[CrossRef]

1988 (1)

1965 (1)

Agrawal, M.

Akiyama, Y.

Alexander, R. W.

Bell, R. J.

Celanovic, I.

Chan, D. L. C.

D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006).
[CrossRef] [PubMed]

D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
[CrossRef] [PubMed]

Chao, C.-H.

Chen, G.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[CrossRef] [PubMed]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[CrossRef]

Chen, L.-Y.

Chen, Y.

Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[CrossRef]

Chen, Y.-R.

Cheng, W.-C.

Cornelius, C.

C. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[CrossRef]

DeBell, G. W.

DeLuca, J. S.

T. Karabacak, J. S. DeLuca, P.-I. Wang, G. A. Ten Eyck, D. Ye, G.-C. Wang, and T.-M. Lu, “Low temperature melting of copper nanorod arrays,” J. Appl. Phys. 99(6), 064304 (2006).
[CrossRef]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Dobrowolski, J. A.

Dowling, J. P.

C. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[CrossRef]

Fan, S.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Green, M. A.

T. Trupke, P. Wurfel, and M. A. Green, “Comment on Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 84(11), 1997 (2004).
[CrossRef]

Hane, K.

Ilak, M.

Joannopoulos, J. D.

D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006).
[CrossRef] [PubMed]

D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
[CrossRef] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[CrossRef] [PubMed]

Kanamori, Y.

Karabacak, T.

T. Karabacak, J. S. DeLuca, P.-I. Wang, G. A. Ten Eyck, D. Ye, G.-C. Wang, and T.-M. Lu, “Low temperature melting of copper nanorod arrays,” J. Appl. Phys. 99(6), 064304 (2006).
[CrossRef]

Kassakian, J.

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Lee, Y. P.

Li, X.-F.

Lin, C.-F.

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003).
[CrossRef]

Lu, T.-M.

T. Karabacak, J. S. DeLuca, P.-I. Wang, G. A. Ten Eyck, D. Ye, G.-C. Wang, and T.-M. Lu, “Low temperature melting of copper nanorod arrays,” J. Appl. Phys. 99(6), 064304 (2006).
[CrossRef]

Luo, C.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[CrossRef] [PubMed]

Miao, J.

Mills, D. R.

Q.-C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys. 72(7), 3013 (1992).
[CrossRef]

Moharam, M. G.

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003).
[CrossRef]

Narayanaswamy, A.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[CrossRef] [PubMed]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[CrossRef]

Newquist, L. A.

O’Sullivan, F.

Ordal, M. A.

Park, K. C.

Perreault, D.

Peumans, P.

Pincon, O.

Pommet, D. A.

Querry, M. R.

Rephaeli, E.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

Sai, H.

Schmidt, R. N.

Sergeant, N. P.

Soljacic, M.

D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
[CrossRef] [PubMed]

D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Sullivan, B. T.

Ten Eyck, G. A.

T. Karabacak, J. S. DeLuca, P.-I. Wang, G. A. Ten Eyck, D. Ye, G.-C. Wang, and T.-M. Lu, “Low temperature melting of copper nanorod arrays,” J. Appl. Phys. 99(6), 064304 (2006).
[CrossRef]

Tikhonravov, A. V.

Trubetskov, M. K.

Trupke, T.

T. Trupke, P. Wurfel, and M. A. Green, “Comment on Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 84(11), 1997 (2004).
[CrossRef]

Wan, J. T. K.

J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009).
[CrossRef]

Wang, G.-C.

T. Karabacak, J. S. DeLuca, P.-I. Wang, G. A. Ten Eyck, D. Ye, G.-C. Wang, and T.-M. Lu, “Low temperature melting of copper nanorod arrays,” J. Appl. Phys. 99(6), 064304 (2006).
[CrossRef]

Wang, L. A.

Wang, P.-I.

T. Karabacak, J. S. DeLuca, P.-I. Wang, G. A. Ten Eyck, D. Ye, G.-C. Wang, and T.-M. Lu, “Low temperature melting of copper nanorod arrays,” J. Appl. Phys. 99(6), 064304 (2006).
[CrossRef]

Wurfel, P.

T. Trupke, P. Wurfel, and M. A. Green, “Comment on Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 84(11), 1997 (2004).
[CrossRef]

Ye, D.

T. Karabacak, J. S. DeLuca, P.-I. Wang, G. A. Ten Eyck, D. Ye, G.-C. Wang, and T.-M. Lu, “Low temperature melting of copper nanorod arrays,” J. Appl. Phys. 99(6), 064304 (2006).
[CrossRef]

Yugami, H.

Zhang, Q.-C.

Q.-C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys. 72(7), 3013 (1992).
[CrossRef]

Zhang, Z.

Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[CrossRef]

Zheng, Y.-X.

Zhou, P.

Appl. Opt. (4)

Appl. Phys. Lett. (4)

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
[CrossRef]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003).
[CrossRef]

T. Trupke, P. Wurfel, and M. A. Green, “Comment on Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 84(11), 1997 (2004).
[CrossRef]

J. Appl. Phys. (2)

Q.-C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys. 72(7), 3013 (1992).
[CrossRef]

T. Karabacak, J. S. DeLuca, P.-I. Wang, G. A. Ten Eyck, D. Ye, G.-C. Wang, and T.-M. Lu, “Low temperature melting of copper nanorod arrays,” J. Appl. Phys. 99(6), 064304 (2006).
[CrossRef]

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[CrossRef]

J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

C. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[CrossRef]

Phys. Rev. B (3)

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[CrossRef] [PubMed]

Other (13)

O. Pincon, M. Agrawal, and P. Peumans, “Aperiodic metallodielectric stacks for thermophotovoltaic applications,” submitted.

C. E. Kennedy, “Progress to develop an advanced solar-selective coating,” 14th Biennial CSP SolarPACES Symposium, NREL/CD-550-42709 (2008)

A. Narayanaswamy, J. Cybulksi, and G. Chen, “1D Metallo-Dielectric Photonic Crystals as Selective Emitters for Thermophotovoltaic Applications,” Thermophotovoltaic Generation of Electricity, Sixth Conference, CP738, 215 (2004)

F. Burkholder and C. Kutscher, “Heat-Loss Testing of Solel’s UVAC3 Parabolic Trough Receiver,” NREL/TP-550-42394 (2008).

F. Burkholder and C. Kutscher, “Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver,” NREL/TP-550-45633 (2009).

C.E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials, NREL/TP-520-31267 (2002).

C. E. Kennedy, and H. Price, “Progress in development of high-temperature solar-selective coatings,” NREL/CP-520-36997 Proc. ISEC2005 2005 International Solar Energy Conference August 6-12, 2005, Orlando, Florida USA, ISEC2005-76039

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters, CP653, Thermophotovoltaics Generation of Electricity: 5th Conference, 164 (2003)

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (John Wiley & Sons, New Jersey, 2007)

S. A. Furman, A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Frontieres, Gif-sur-Yvette, 1992).

P. Yeh, Optical waves in layered media, (John Wiley & Sons, Inc., New Jersey, 1998)

E. B. Palik, Handbook of Optical Constants, (Academic Press, New York, 1985)

H. Sai, Y. Kanamori, K. Hane, H. Yugami, and M. Yamaguchi, “Numerical study on tungsten selective radiators with various micro/nano structures,” Photovoltaic Specialists Conference, 2005. IEEE, 762-765 (2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Spectral absorptivity at normal incidence for aperiodic metal-dielectric stacks optimized for operation at 720K using (a) Mo, TiO2 and MgF2 and (b) W, TiO2 and MgF2. The spectral absorptivity of uncoated Mo (a) and W (b) are also shown. The stacks have respectively 5, 7, 9 or 11 layers [27]. The substrate is included when counting the number of layers. The spectral absorptivity of an ideal absorber at 720K is also plotted for comparison. In contrast to [27] where the spectral hemispherical absorptivity was show in Figure 5, in this figure the spectral absorptivity is shown at normal incidence.

Fig. 2
Fig. 2

Two periods of the metallic sub-wavelength V-groove grating coated with an aperiodic multilayer stack. The grating period a and the V-groove angle θ G R are indicated.

Fig. 3
Fig. 3

Discretization of the coated V-groove grating used in the RCWA simulations. We note that actual simulations used a much finer grid.

Fig. 4
Fig. 4

Convergence analysis for an uncoated Mo V-groove grating with θ G R =45° and a grating period a=300nm.

Fig. 5
Fig. 5

Normal spectral absorptivity for uncoated Mo V-groove gratings with various V-groove angles for (a) TE mode (Ey , Ey , Hx ) and (b) TM mode (Ex , Hy , Hz ). The structure varies from planar geometry (dark blue) to deep V-groove gratings with high aspect ratio (dark red). The period a=300nm is kept constant for all grooves. The captions illustrate the mirror symmetry and define the (a) TE and (b) TM mode.

Fig. 6
Fig. 6

Spectral normal absorptivity of uncoated Mo V-groove sub-wavelength gratings as a function of the angle θ G R . For the top, middle and bottom plot the grating period a is kept constant at 300 nm, 500 nm and 700 nm respectively.

Fig. 7
Fig. 7

Normal spectral absorptivity as a function of the angle θ G R of the groove for Mo V-groove gratings coated with a 5-layer stack composed of Mo, MgF2 and TiO2. For the top, middle and bottom plot the grating period a is 300 nm, 500 nm and 700 nm respectively.

Fig. 8
Fig. 8

Merit function evaluation at 720K for a 5-layer aperiodic coating (cyan) composed of layers of Mo, TiO2 and MgF2 on top of Mo V-groove gratings with grating period a=300nm and varying groove angle θ G R . The merit evaluations for uncoated Mo V-groove gratings are also shown (blue).

Fig. 9
Fig. 9

Angular absorptivity α ( θ , ϕ ) at (a,b) λ=0.8μm and (c,d) λ=3μm for (a,c) P polarization and (b,d) S polarization for a 5 layer aperiodic stack composed of Mo, TiO2 and MgF2 layers on top of a Mo V-groove with period a=300nm and θ G R = 40 ° .

Fig. 10
Fig. 10

Spectral absorptivity at normal incidence α ( 0 , 0 , λ ) for a 5 layer aperiodic stack composed of Mo, TiO2 and MgF2 layers on top of a Mo V-groove with period a=300nm and θ G R = 40 ° . Normal absorptivity when (a) electric field (Ey ) is perpendicular to the groove (couples into TE mode) and (b) electric field (Ex ) is parallel to the groove (couples into TM mode). Angular absorptivity α ( θ , ϕ ) at λ=1.4μm for (c) P polarization and (d) S polarization.

Fig. 11
Fig. 11

Merit evaluation at 720K as a function of angle θ G R for aperiodic stacks composed of (a) Mo, TiO2 and MgF2 layers on top of Mo V-grooved substrates and (b) W, TiO2 and MgF2 layers on top of W V-grooved substrates for period a=300nm. The stacks have respectively 5, 7, 9 and 11 layers and were previously optimized for planar geometry [27]. The merit is also shown for the uncoated V-grooves made of (a) Mo and (b) W.

Fig. 12
Fig. 12

Spectral absorptivity at normal incidence for aperiodic stacks composed of (a) Mo, TiO2 and MgF2 layers on top of Mo V-groove gratings with optimized aspect ratios and (b) W, TiO2 and MgF2 layers on top of W V-groove gratings with optimized aspect ratios. The grating period a is 300nm. The stacks have respectively 5, 7, 9 and 11 layers and were previously optimized for planar geometry [27]. The spectral absorptivity is also shown for the optimal uncoated V-groove gratings made of (a) Mo and (b) W. The optimal aspect ratio ( θ G R , max ) for each of these coated gratings can be found in Table 1.

Tables (1)

Tables Icon

Table 1 Merit F at 720K for coatings on planar geometry ( θ G R = 0) and optimal coated V-groove ( θ G R = θ G R , max ). When determining the number of layers Ls in an aperiodic stack, the substrate layer also counts as a layer.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F ( T ) = α s o l a r × [ 1 ε t h e r m a l ( T ) ]
L = t t o t ( 1 + a μ m tan ( θ G R ) )

Metrics