Abstract

We experimentally demonstrate random bit generation using multi-bit samples of bandwidth-enhanced chaos in semiconductor lasers. Chaotic fluctuation of laser output is generated in a semiconductor laser with optical feedback and the chaotic output is injected into a second semiconductor laser to obtain a chaotic intensity signal with bandwidth enhanced up to 16 GHz. The chaotic signal is converted to an 8-bit digital signal by sampling with a digital oscilloscope at 12.5 Giga samples per second (GS/s). Random bits are generated by bitwise exclusive-OR operation on corresponding bits in samples of the chaotic signal and its time-delayed signal. Statistical tests verify the randomness of bit sequences obtained using 1 to 6 bits per sample, corresponding to fast random bit generation rates from 12.5 to 75 Gigabit per second (Gb/s) ( = 6 bit × 12.5 GS/s).

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Eastlake, J. Schiller, and S. Crocker, “Randomness requirements for security,” RFC4086 (2005) http://tools.ietf.org/html/rfc4086
  2. Security requirements for cryptographic modules. FIPS 140–2 (2001) http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
  3. N. Gisin, G. Robordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [CrossRef]
  4. N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
    [CrossRef] [PubMed]
  5. D. Knuth, “The Art of Computer Programming,” Volume 2: Seminumerical Algorithms (3rd Edition), Addison-Wesley Professional (1996).
  6. W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst. I 44(6), 521–528 (1997).
    [CrossRef]
  7. J. T. Gleeson, “Truly random number generator based on turbulent electroconvection,” Appl. Phys. Lett. 81(11), 1949 (2002).
    [CrossRef]
  8. M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
    [CrossRef]
  9. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 1–3 (2008).
    [CrossRef]
  10. B. Qi, Y.-M. Chi, H.-K. Lo, and L. Qian, “High-speed quantum random number generation by measuring phase noise of a single-mode laser,” Opt. Lett. 35(3), 312–314 (2010).
    [CrossRef] [PubMed]
  11. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
    [CrossRef]
  12. T. E. Murphy and R. Roy, “The world’s fastest dice,” Nat. Photonics 2(12), 714–715 (2008).
    [CrossRef]
  13. K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
    [CrossRef]
  14. T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express 17(11), 9053–9061 (2009).
    [CrossRef] [PubMed]
  15. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 1–4 (2009).
    [CrossRef]
  16. Y. Takiguchi, K. Ohyagi, and J. Ohtsubo, “Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback,” Opt. Lett. 28(5), 319–321 (2003).
    [CrossRef] [PubMed]
  17. A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
    [CrossRef]
  18. F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).
    [CrossRef]
  19. A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20(19), 1633–1635 (2008).
    [CrossRef]
  20. H. Someya, I. Oowada, H. Okumura, T. Kida, and A. Uchida, “Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection,” Opt. Express 17(22), 19536–19543 (2009).
    [CrossRef] [PubMed]
  21. G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
    [CrossRef] [PubMed]
  22. J.-P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80(10), 2249–2252 (1998).
    [CrossRef]
  23. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
    [CrossRef]
  24. F.-Y. Lin and J.-M. Liu, “Chaotic lider,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
    [CrossRef]
  25. J. Ohtsubo, “Semiconductor Lasers, -Stability, Instability and Chaos-,” Second Ed., Springer-Verlag, Berlin Heidelberg (2005).
  26. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, and M. Levenson, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800–22, 2001; Revision 1, August 2008. http://csrc.nist.gov/publications/nistpubs/800-22-rev1/SP800-22rev1.pdf
  27. S. J. Kim, K. Umeno, and A. Hasegawa, “Corrections of the NIST statistical test suite for randomness,” arXiv:nlin.CD/0401040v1, 2004.
  28. G. Marsaglia, DIEHARD: A battery of tests of randomness. http://stat.fsu.edu/ geo, 1996.
  29. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
    [CrossRef]

2010 (2)

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

B. Qi, Y.-M. Chi, H.-K. Lo, and L. Qian, “High-speed quantum random number generation by measuring phase noise of a single-mode laser,” Opt. Lett. 35(3), 312–314 (2010).
[CrossRef] [PubMed]

2009 (4)

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 1–4 (2009).
[CrossRef]

T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express 17(11), 9053–9061 (2009).
[CrossRef] [PubMed]

H. Someya, I. Oowada, H. Okumura, T. Kida, and A. Uchida, “Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection,” Opt. Express 17(22), 19536–19543 (2009).
[CrossRef] [PubMed]

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

2008 (4)

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 1–3 (2008).
[CrossRef]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

T. E. Murphy and R. Roy, “The world’s fastest dice,” Nat. Photonics 2(12), 714–715 (2008).
[CrossRef]

A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20(19), 1633–1635 (2008).
[CrossRef]

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

2004 (1)

F.-Y. Lin and J.-M. Liu, “Chaotic lider,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[CrossRef]

2003 (4)

Y. Takiguchi, K. Ohyagi, and J. Ohtsubo, “Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback,” Opt. Lett. 28(5), 319–321 (2003).
[CrossRef] [PubMed]

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).
[CrossRef]

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

2002 (2)

N. Gisin, G. Robordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

J. T. Gleeson, “Truly random number generator based on turbulent electroconvection,” Appl. Phys. Lett. 81(11), 1949 (2002).
[CrossRef]

1998 (2)

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[CrossRef] [PubMed]

J.-P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80(10), 2249–2252 (1998).
[CrossRef]

1997 (1)

W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst. I 44(6), 521–528 (1997).
[CrossRef]

1949 (1)

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
[CrossRef] [PubMed]

Aida, T.

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[CrossRef]

Amano, K.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express 17(11), 9053–9061 (2009).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Aviad, Y.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 1–4 (2009).
[CrossRef]

Bucci, M.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

Chi, Y.-M.

Cohen, E.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Connelly, J. A.

W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst. I 44(6), 521–528 (1997).
[CrossRef]

Davis, P.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express 17(11), 9053–9061 (2009).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[CrossRef]

Dowlatabadi, A. B.

W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst. I 44(6), 521–528 (1997).
[CrossRef]

Dynes, J. F.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 1–3 (2008).
[CrossRef]

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Germani, L.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

Gisin, N.

N. Gisin, G. Robordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Gleeson, J. T.

J. T. Gleeson, “Truly random number generator based on turbulent electroconvection,” Appl. Phys. Lett. 81(11), 1949 (2002).
[CrossRef]

Goedgebuer, J.-P.

J.-P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80(10), 2249–2252 (1998).
[CrossRef]

He, H.

A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20(19), 1633–1635 (2008).
[CrossRef]

Heil, T.

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[CrossRef]

Hirano, K.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express 17(11), 9053–9061 (2009).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Holman, W. T.

W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst. I 44(6), 521–528 (1997).
[CrossRef]

Honjo, T.

Inoue, M.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Kanter, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 1–4 (2009).
[CrossRef]

Kida, T.

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

J.-P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80(10), 2249–2252 (1998).
[CrossRef]

Lin, F. Y.

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).
[CrossRef]

Lin, F.-Y.

F.-Y. Lin and J.-M. Liu, “Chaotic lider,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[CrossRef]

Liu, J. M.

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).
[CrossRef]

Liu, J.-M.

F.-Y. Lin and J.-M. Liu, “Chaotic lider,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[CrossRef]

Liu, Y.

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[CrossRef]

Lo, H.-K.

Luzzi, R.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

Metropolis, N.

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
[CrossRef] [PubMed]

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Murphy, T. E.

T. E. Murphy and R. Roy, “The world’s fastest dice,” Nat. Photonics 2(12), 714–715 (2008).
[CrossRef]

Naito, S.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Ohtsubo, J.

Ohyagi, K.

Okumura, H.

Oowada, I.

H. Someya, I. Oowada, H. Okumura, T. Kida, and A. Uchida, “Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection,” Opt. Express 17(22), 19536–19543 (2009).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Porte, H.

J.-P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80(10), 2249–2252 (1998).
[CrossRef]

Qi, B.

Qian, L.

Reidler, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 1–4 (2009).
[CrossRef]

Robordy, G.

N. Gisin, G. Robordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Rosenbluh, M.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 1–4 (2009).
[CrossRef]

Roy, R.

T. E. Murphy and R. Roy, “The world’s fastest dice,” Nat. Photonics 2(12), 714–715 (2008).
[CrossRef]

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[CrossRef] [PubMed]

Sharpe, A. W.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 1–3 (2008).
[CrossRef]

Shields, A. J.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 1–3 (2008).
[CrossRef]

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Someya, H.

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Takiguchi, Y.

Tittel, W.

N. Gisin, G. Robordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Tokura, Y.

Trifiletti, A.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

Uchida, A.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

H. Someya, I. Oowada, H. Okumura, T. Kida, and A. Uchida, “Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection,” Opt. Express 17(22), 19536–19543 (2009).
[CrossRef] [PubMed]

T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express 17(11), 9053–9061 (2009).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[CrossRef]

Ulam, S.

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
[CrossRef] [PubMed]

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[CrossRef] [PubMed]

Varanouvo, M.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

Wang, A.

A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20(19), 1633–1635 (2008).
[CrossRef]

Wang, Y.

A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20(19), 1633–1635 (2008).
[CrossRef]

Yoshimori, S.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Yoshimura, K.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express 17(11), 9053–9061 (2009).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Yuan, Z. L.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 1–3 (2008).
[CrossRef]

Zbinden, H.

N. Gisin, G. Robordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

J. T. Gleeson, “Truly random number generator based on turbulent electroconvection,” Appl. Phys. Lett. 81(11), 1949 (2002).
[CrossRef]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 1–3 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F.-Y. Lin and J.-M. Liu, “Chaotic lider,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20(19), 1633–1635 (2008).
[CrossRef]

IEEE Trans. Circuits Syst. I (1)

W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst. I 44(6), 521–528 (1997).
[CrossRef]

IEEE Trans. Comput. (1)

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

J. Am. Stat. Assoc. (1)

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
[CrossRef] [PubMed]

Nat. Photonics (3)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

T. E. Murphy and R. Roy, “The world’s fastest dice,” Nat. Photonics 2(12), 714–715 (2008).
[CrossRef]

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Opt. Commun. (1)

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221, 173–180 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 1–4 (2009).
[CrossRef]

J.-P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80(10), 2249–2252 (1998).
[CrossRef]

Rev. Mod. Phys. (1)

N. Gisin, G. Robordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Science (1)

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[CrossRef] [PubMed]

Other (7)

D. Knuth, “The Art of Computer Programming,” Volume 2: Seminumerical Algorithms (3rd Edition), Addison-Wesley Professional (1996).

D. Eastlake, J. Schiller, and S. Crocker, “Randomness requirements for security,” RFC4086 (2005) http://tools.ietf.org/html/rfc4086

Security requirements for cryptographic modules. FIPS 140–2 (2001) http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

J. Ohtsubo, “Semiconductor Lasers, -Stability, Instability and Chaos-,” Second Ed., Springer-Verlag, Berlin Heidelberg (2005).

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, and M. Levenson, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800–22, 2001; Revision 1, August 2008. http://csrc.nist.gov/publications/nistpubs/800-22-rev1/SP800-22rev1.pdf

S. J. Kim, K. Umeno, and A. Hasegawa, “Corrections of the NIST statistical test suite for randomness,” arXiv:nlin.CD/0401040v1, 2004.

G. Marsaglia, DIEHARD: A battery of tests of randomness. http://stat.fsu.edu/ geo, 1996.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for random bit generation with chaotic lasers. Amp, electronic amplifier; FC, fiber coupler ; ISO, optical isolator; PD, photodetector.

Fig. 2
Fig. 2

(a) RF spectrum of Laser 1, (b) RF spectrum of Laser 2, (c) temporal waveforms of Laser 2 output and the same output optically delayed in time (5.0 ns delay), and (d) autocorrelation function of the temporal waveform of Laser 2 output. The inset is the enlargement of (d). (a), (b) BW: bandwidth.

Fig. 3
Fig. 3

Method for generating a random bit sequence using multiple (m = 1,…, 8) significant bits. Example for m = 6. LSB, least significant bit; MSB, most significant bit; XOR, exclusive-OR operation.

Fig. 4
Fig. 4

Example of random bit sequence plotted in two-dimensional plane. Bits “1” and “0” are converted into white and black dots, respectively, and placed from left to right (and from top to bottom). 500 by 500 bits are shown.

Fig. 5
Fig. 5

Probability density functions for (a) 8-bit digitized chaotic waveform, (b) 8-bit random bits after bitwise XOR operation is applied to the two 8-bit digitized chaotic waveforms, (c) 7 LSBs selected from the 8-bit XOR data, and (d) 6 LSBs selected from the 8-bit XOR data.

Fig. 6
Fig. 6

The number of passed NIST SP 800-22 tests as a function of the number of least significant bits (LSBs) used to generate the bit sequence. “15” indicates that all the tests are passed.

Fig. 7
Fig. 7

Statistical test measures as a function of the number of least significant bits (LSBs) used to generate the bit sequence. (a) Uniformity of p-values (referred to as P-value in Table 1) for the runs test (black solid curve) and block-frequency test (red dotted curve) in NIST SP 800-22 and (b) Ratio of V(obs) as a function of the number of LSBs. (a) P-value needs to be larger than 10−4 to pass the test criteria (blue dashed line). The P-values for 7 and 8 LSBs are 0 (out of range in the figure). The block length is 128 bit for the block-frequency test. (b) V(obs) for 8 LSBs is 49.328% (out of range in the figure).

Fig. 8
Fig. 8

The number of passed NIST SP 800-22 tests as a function of the significant bit. (Significant bit 1 is LSB; significant bit 8 is MSB.) The sequences are generated using only one of the 8 bits acquired at each sample time. “15” indicates that all the tests are passed.

Fig. 9
Fig. 9

Statistical test measures as a function of the significant bit. (Significant bit 1 is LSB; significant bit 8 is MSB.) (a) Uniformity of p-values (referred to as P-value in Table 1) for the runs test (black solid curve) and block-frequency test (red dotted curve) in NIST SP 800-22 and (b) Ratio of V(obs) as a function of the significant bit. (a) P-value needs to be larger than 10−4 to pass the test criteria (blue dashed line).

Tables (2)

Tables Icon

Table 1 Example of results of statistical test suite NIST SP 800-22 for a set of 1000 sequences generated using 6 LSBs. Each sequence is 1 Mbit. Significance level: α = 0.01. To pass the tests, the P-value of the uniformity of p-values should be larger than 0.0001, and the proportion of sequences satisfying p-value > α for 1000 samples should be in the range of 0.99 ± 0.0094392 [26]. For tests which produce multiple P-values and proportions, the worst case is shown.

Tables Icon

Table 2 Example of results of statistical test suite Diehard for sequences generated using 6 LSBs. The sequence length is 74 Mbit. “KS” indicates that a single P-value is obtained by the Kolmogorov-Smirnov (KS) test [28]. For the tests which produce multiple P-values without the KS test, the worst case is shown.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

,   s m ( t ) ,   s m 1 ( t ) , . , s 1 ( t ) ,   s m ( t + 1 ) , s m 1 ( t + 1 ) , s 1 ( t + 1 ) ,
V ( o b s ) = 1 n [ { k = 1 n 1 r ( k ) } + 1 ] × 100 [ % ]
r ( k ) = { 0 ε k = ε k + 1 1 ε k ε k + 1

Metrics