Abstract

We report a picosecond fiber MOPA pumped supercontinuum source with 39 W output, spanning at least 0.4-2.25 µm at a repetition rate of 114.8 MHz. The 2m long PCF had a large, 4.4 µm diameter core and a high-delta design which led to an 80% coupling efficiency, high damage threshold and rapid generation of visible continuum generation from the picosecond input pulses. The high and relatively uniform power density across the visible spectral region was ~31.7 mW/nm corresponding to peak power density of ~12.5 W/nm for the 21 ps input pulses. The peak power density was increased to 26.9 W/nm by reducing the repetition rate to 28 MHz. This represents an increase in both average and peak power compared to previously reported visible supercontinuum sources from either CW pumped or pulsed-systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  2. R. R. Alfano, ed., The Supercontinuum Laser Source, 2nd ed. (Springer, New York, 2005), p. 537.
  3. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  4. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [CrossRef]
  6. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008).
    [CrossRef] [PubMed]
  7. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
    [CrossRef] [PubMed]
  8. T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228(1-3), 71–78 (2003).
    [CrossRef]
  9. A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping,” Opt. Express 13(2), 377–381 (2005).
    [CrossRef] [PubMed]
  10. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14(12), 5715–5722 (2006).
    [CrossRef] [PubMed]
  11. K. K. Chen, S.-U. Alam, J. R. Hayes, D. Lin, A. Malinowski, and D. J. Richardson, “100W Single Mode Single Polarization Picosecond Ytterbium Doped Fibre MOPA Frequency Doubled to 530 nm,” in CLEO Pacific Rim, paper TuF4–4, (2009).
  12. M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16(25), 21076–21086 (2008).
    [CrossRef] [PubMed]
  13. S. Coen, A. H. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26(17), 1356–1358 (2001).
    [CrossRef]
  14. N. A. Mortensen and J. R. Folkenberg, “Near-field to far-field transition of photonic crystal fibers: symmetries and interference phenomena,” Opt. Express 10(11), 475–481 (2002).
    [PubMed]
  15. N. Yamamoto, L. Tao, and A. P. Yalin, “Single-mode delivery of 250 nm light using a large mode area photonic crystal fiber,” Opt. Express 17(19), 16933–16940 (2009).
    [CrossRef] [PubMed]

2009

2008

2006

2005

2003

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228(1-3), 71–78 (2003).
[CrossRef]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

2002

2001

2000

Bang, O.

Chau, A. H.

Coen, S.

Cumberland, B. A.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Folkenberg, J. R.

Frosz, M. H.

Gapontsev, V. P.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

George, A. K.

Hansen, K. P.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228(1-3), 71–78 (2003).
[CrossRef]

Harvey, J. D.

Knight, J. C.

Kudlinski, A.

Leonhardt, R.

Limpert, J.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228(1-3), 71–78 (2003).
[CrossRef]

Mortensen, N. A.

Moselund, P. M.

Popov, S. V.

Ranka, J. K.

Rasmussen, P. D.

Rulkov, A. B.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

Schreiber, T.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228(1-3), 71–78 (2003).
[CrossRef]

Stentz, A. J.

Stone, J. M.

Tao, L.

Taylor, J. R.

Thomsen, C. L.

Travers, J. C.

Tunnermann, A.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228(1-3), 71–78 (2003).
[CrossRef]

Vyatkin, M. Y.

Wadsworth, W. J.

Windeler, R. S.

Yalin, A. P.

Yamamoto, N.

Zellmer, H.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228(1-3), 71–78 (2003).
[CrossRef]

Nature

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Commun.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228(1-3), 71–78 (2003).
[CrossRef]

Opt. Express

A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping,” Opt. Express 13(2), 377–381 (2005).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14(12), 5715–5722 (2006).
[CrossRef] [PubMed]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008).
[CrossRef] [PubMed]

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
[CrossRef] [PubMed]

M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16(25), 21076–21086 (2008).
[CrossRef] [PubMed]

N. A. Mortensen and J. R. Folkenberg, “Near-field to far-field transition of photonic crystal fibers: symmetries and interference phenomena,” Opt. Express 10(11), 475–481 (2002).
[PubMed]

N. Yamamoto, L. Tao, and A. P. Yalin, “Single-mode delivery of 250 nm light using a large mode area photonic crystal fiber,” Opt. Express 17(19), 16933–16940 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Science

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other

R. R. Alfano, ed., The Supercontinuum Laser Source, 2nd ed. (Springer, New York, 2005), p. 537.

K. K. Chen, S.-U. Alam, J. R. Hayes, D. Lin, A. Malinowski, and D. J. Richardson, “100W Single Mode Single Polarization Picosecond Ytterbium Doped Fibre MOPA Frequency Doubled to 530 nm,” in CLEO Pacific Rim, paper TuF4–4, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the Yb-doped fiber MOPA and launch to the PCF.

Fig. 2
Fig. 2

(a) Dispersion profile of the PCF. (b) Measured attenuation data.

Fig. 3
Fig. 3

Supercontinuum output power vs incident power. Inset shows the far field pattern of the output beam and prism separated white light.

Fig. 4
Fig. 4

Supercontinuum evolution in a 2 m long PCF at 0.15 W, 11 W and 57 W of incident pump power at repetition rate of 114.8 MHz. Solid lines – OSA measurements, dashed line–measurements with monochrometer and PbS detector. (The top lines in green/yellow show spectra with input polarization aligned to orthogonal birefringence axes.)

Fig. 5
Fig. 5

Pulse shape of transmitted low power pump (blue dotted line), filtered at 1186.6 nm (green dash dotted line), filtered at 1317.6 nm (black dashes) and broadband (solid red line).

Fig. 6
Fig. 6

Supercontinuum evolution in a 2 m long PCF at 0.15 W, 7 W and 25 W of incident pump power at repetition rate of 28 MHz. (The top lines in green/yellow show spectra with input polarization aligned to orthogonal birefringence axes. Linestyles as in Fig. 4.)

Metrics