Abstract

An optical microcavity based on pillar arrays has been fabricated in Si/SiO2 material system. Transmission measurement was taken and a quality factor as high as 27,600 was observed. This cavity was tested for sensing applications by immersing into optical fluids with accurate refractive indices. For refractive index change of 0.01, a resonance peak wavelength shift of 3.5 nm was measured. We also compare cavities consisting of pillars with different aspect ratios.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
    [CrossRef] [PubMed]
  2. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83,1915-1917 (2003).
    [CrossRef]
  3. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an untrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1,49-52 (2007).
    [CrossRef]
  4. A. R.M. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, "Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)," Opt. Express 16, 12084-12089 (2008).
    [CrossRef] [PubMed]
  5. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with twodimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004).
    [CrossRef] [PubMed]
  6. M. Lee and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007).
    [CrossRef] [PubMed]
  7. T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, "A pillar-array based two-dimensional photonic crystal microcavity," Appl. Phys. Lett. 94, 241110 (2009).
    [CrossRef]
  8. M. Tokushima, H. Yamada, and Y. Arakawa,"1.5-?m-wavelength light guiding in waveguides in square-latticeof-rod photonic crystal slab," Appl. Phys. Lett. 84, 4298 (2004).
    [CrossRef]
  9. X. Ao, L. Liu, L. Wosinski, and S. He, "Polarization beam splitter based on a two-dimensional photonic crystal of pillar type," Appl. Phys. Lett. 89, 171115 (2006).
    [CrossRef]
  10. A. Kok, E. J. Geluk, B. Docter, J. van der Tol, R. Nozel, M. Smit, and R. Baets, "Transmission of pillar-based photonic crystal waveguides in InP technology," Appl. Phys. Lett. 91, 201109 (2007).
    [CrossRef]
  11. S. H. G. Teo, A. Q. Liu, J. B. Zhang, M. H. Hong, J. Singh, M. B. Yu, N. Singh, and G. Q. Lo, "Photonic bandgap crystal resonator enhanced, laser controlled modulations of optical interconnects for photonic integrated circuits," Opt. Express 16, 7842 (2008).
    [CrossRef] [PubMed]
  12. U. Philipose, T. Xu, S. Yang, P. Sun, and H. E. Ruda, Y. Q. Wang, and K. L. Kavanagh, "Enhancement of band edge luminescence in ZnSe nanowires," J. Appl. Phys. 100, 084316 (2006).
    [CrossRef]
  13. T. Matensson, M. Borgstrom, W. Seifert, B. J. Ohlsson and L. Samuelson, "Fabrication of individually seeded nanowire arrays by vapour liquid solid growth," Nanotechnology 14, 1255-1258 (2003).
    [CrossRef]
  14. T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, "Highly confined mode above the light line in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 93, 241105 (2008).
    [CrossRef]
  15. T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, "Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations," Phys. Rev. B 75, 125104 (2007).
    [CrossRef]

2009 (1)

T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, "A pillar-array based two-dimensional photonic crystal microcavity," Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

2008 (3)

2007 (4)

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, "Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations," Phys. Rev. B 75, 125104 (2007).
[CrossRef]

A. Kok, E. J. Geluk, B. Docter, J. van der Tol, R. Nozel, M. Smit, and R. Baets, "Transmission of pillar-based photonic crystal waveguides in InP technology," Appl. Phys. Lett. 91, 201109 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an untrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1,49-52 (2007).
[CrossRef]

M. Lee and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007).
[CrossRef] [PubMed]

2006 (2)

X. Ao, L. Liu, L. Wosinski, and S. He, "Polarization beam splitter based on a two-dimensional photonic crystal of pillar type," Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

U. Philipose, T. Xu, S. Yang, P. Sun, and H. E. Ruda, Y. Q. Wang, and K. L. Kavanagh, "Enhancement of band edge luminescence in ZnSe nanowires," J. Appl. Phys. 100, 084316 (2006).
[CrossRef]

2004 (2)

M. Tokushima, H. Yamada, and Y. Arakawa,"1.5-?m-wavelength light guiding in waveguides in square-latticeof-rod photonic crystal slab," Appl. Phys. Lett. 84, 4298 (2004).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with twodimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004).
[CrossRef] [PubMed]

2003 (3)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
[CrossRef] [PubMed]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83,1915-1917 (2003).
[CrossRef]

T. Matensson, M. Borgstrom, W. Seifert, B. J. Ohlsson and L. Samuelson, "Fabrication of individually seeded nanowire arrays by vapour liquid solid growth," Nanotechnology 14, 1255-1258 (2003).
[CrossRef]

Aitchison, J. S.

T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, "A pillar-array based two-dimensional photonic crystal microcavity," Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, "Highly confined mode above the light line in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
[CrossRef] [PubMed]

Ao, X.

X. Ao, L. Liu, L. Wosinski, and S. He, "Polarization beam splitter based on a two-dimensional photonic crystal of pillar type," Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Arakawa, Y.

M. Tokushima, H. Yamada, and Y. Arakawa,"1.5-?m-wavelength light guiding in waveguides in square-latticeof-rod photonic crystal slab," Appl. Phys. Lett. 84, 4298 (2004).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
[CrossRef] [PubMed]

Baets, R.

A. Kok, E. J. Geluk, B. Docter, J. van der Tol, R. Nozel, M. Smit, and R. Baets, "Transmission of pillar-based photonic crystal waveguides in InP technology," Appl. Phys. Lett. 91, 201109 (2007).
[CrossRef]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83,1915-1917 (2003).
[CrossRef]

Chen, J.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83,1915-1917 (2003).
[CrossRef]

Cho, A. Y.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83,1915-1917 (2003).
[CrossRef]

Chow, E.

De La Rue, R. M.

Docter, B.

A. Kok, E. J. Geluk, B. Docter, J. van der Tol, R. Nozel, M. Smit, and R. Baets, "Transmission of pillar-based photonic crystal waveguides in InP technology," Appl. Phys. Lett. 91, 201109 (2007).
[CrossRef]

Fauchet, P. M.

Geluk, E. J.

A. Kok, E. J. Geluk, B. Docter, J. van der Tol, R. Nozel, M. Smit, and R. Baets, "Transmission of pillar-based photonic crystal waveguides in InP technology," Appl. Phys. Lett. 91, 201109 (2007).
[CrossRef]

Girolami, G.

Gmachl, C.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83,1915-1917 (2003).
[CrossRef]

Grot, A.

He, S.

X. Ao, L. Liu, L. Wosinski, and S. He, "Polarization beam splitter based on a two-dimensional photonic crystal of pillar type," Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Hong, M. H.

Johnson, N. P.

Kavanagh, K. L.

U. Philipose, T. Xu, S. Yang, P. Sun, and H. E. Ruda, Y. Q. Wang, and K. L. Kavanagh, "Enhancement of band edge luminescence in ZnSe nanowires," J. Appl. Phys. 100, 084316 (2006).
[CrossRef]

Kok, A.

A. Kok, E. J. Geluk, B. Docter, J. van der Tol, R. Nozel, M. Smit, and R. Baets, "Transmission of pillar-based photonic crystal waveguides in InP technology," Appl. Phys. Lett. 91, 201109 (2007).
[CrossRef]

Kuramochi, E.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an untrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1,49-52 (2007).
[CrossRef]

Lee, M.

Liu, A. Q.

Liu, L.

X. Ao, L. Liu, L. Wosinski, and S. He, "Polarization beam splitter based on a two-dimensional photonic crystal of pillar type," Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Lo, G. Q.

Mirkarimi, L.W.

Mojahedi, M.

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, "Highly confined mode above the light line in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

Nair, S. V.

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, "Highly confined mode above the light line in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, "Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations," Phys. Rev. B 75, 125104 (2007).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
[CrossRef] [PubMed]

Notomi, M.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an untrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1,49-52 (2007).
[CrossRef]

Nozel, R.

A. Kok, E. J. Geluk, B. Docter, J. van der Tol, R. Nozel, M. Smit, and R. Baets, "Transmission of pillar-based photonic crystal waveguides in InP technology," Appl. Phys. Lett. 91, 201109 (2007).
[CrossRef]

Painter, O.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83,1915-1917 (2003).
[CrossRef]

Philipose, U.

U. Philipose, T. Xu, S. Yang, P. Sun, and H. E. Ruda, Y. Q. Wang, and K. L. Kavanagh, "Enhancement of band edge luminescence in ZnSe nanowires," J. Appl. Phys. 100, 084316 (2006).
[CrossRef]

Ruda, H. E.

T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, "A pillar-array based two-dimensional photonic crystal microcavity," Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, "Highly confined mode above the light line in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, "Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations," Phys. Rev. B 75, 125104 (2007).
[CrossRef]

U. Philipose, T. Xu, S. Yang, P. Sun, and H. E. Ruda, Y. Q. Wang, and K. L. Kavanagh, "Enhancement of band edge luminescence in ZnSe nanowires," J. Appl. Phys. 100, 084316 (2006).
[CrossRef]

Shinya, A.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an untrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1,49-52 (2007).
[CrossRef]

Sigalas, M.

Singh, J.

Singh, N.

Smit, M.

A. Kok, E. J. Geluk, B. Docter, J. van der Tol, R. Nozel, M. Smit, and R. Baets, "Transmission of pillar-based photonic crystal waveguides in InP technology," Appl. Phys. Lett. 91, 201109 (2007).
[CrossRef]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
[CrossRef] [PubMed]

Sorel, M.

Srinivasan, K.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83,1915-1917 (2003).
[CrossRef]

Sun, P.

U. Philipose, T. Xu, S. Yang, P. Sun, and H. E. Ruda, Y. Q. Wang, and K. L. Kavanagh, "Enhancement of band edge luminescence in ZnSe nanowires," J. Appl. Phys. 100, 084316 (2006).
[CrossRef]

Tanabe, T.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an untrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1,49-52 (2007).
[CrossRef]

Taniyama, H.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an untrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1,49-52 (2007).
[CrossRef]

Teo, S. H. G.

Tokushima, M.

M. Tokushima, H. Yamada, and Y. Arakawa,"1.5-?m-wavelength light guiding in waveguides in square-latticeof-rod photonic crystal slab," Appl. Phys. Lett. 84, 4298 (2004).
[CrossRef]

van der Tol, J.

A. Kok, E. J. Geluk, B. Docter, J. van der Tol, R. Nozel, M. Smit, and R. Baets, "Transmission of pillar-based photonic crystal waveguides in InP technology," Appl. Phys. Lett. 91, 201109 (2007).
[CrossRef]

Wang, Y. Q.

U. Philipose, T. Xu, S. Yang, P. Sun, and H. E. Ruda, Y. Q. Wang, and K. L. Kavanagh, "Enhancement of band edge luminescence in ZnSe nanowires," J. Appl. Phys. 100, 084316 (2006).
[CrossRef]

Wheeler, M. S.

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, "Highly confined mode above the light line in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

Wosinski, L.

T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, "A pillar-array based two-dimensional photonic crystal microcavity," Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

X. Ao, L. Liu, L. Wosinski, and S. He, "Polarization beam splitter based on a two-dimensional photonic crystal of pillar type," Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Xu, M. Y.-C.

T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, "A pillar-array based two-dimensional photonic crystal microcavity," Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

Xu, T.

T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, "A pillar-array based two-dimensional photonic crystal microcavity," Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, "Highly confined mode above the light line in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, "Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations," Phys. Rev. B 75, 125104 (2007).
[CrossRef]

U. Philipose, T. Xu, S. Yang, P. Sun, and H. E. Ruda, Y. Q. Wang, and K. L. Kavanagh, "Enhancement of band edge luminescence in ZnSe nanowires," J. Appl. Phys. 100, 084316 (2006).
[CrossRef]

Yamada, H.

M. Tokushima, H. Yamada, and Y. Arakawa,"1.5-?m-wavelength light guiding in waveguides in square-latticeof-rod photonic crystal slab," Appl. Phys. Lett. 84, 4298 (2004).
[CrossRef]

Yang, S.

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, "Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations," Phys. Rev. B 75, 125104 (2007).
[CrossRef]

U. Philipose, T. Xu, S. Yang, P. Sun, and H. E. Ruda, Y. Q. Wang, and K. L. Kavanagh, "Enhancement of band edge luminescence in ZnSe nanowires," J. Appl. Phys. 100, 084316 (2006).
[CrossRef]

Yu, M. B.

Zain, A. R.M.

Zhang, J. B.

Zhu, N.

T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, "A pillar-array based two-dimensional photonic crystal microcavity," Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83,1915-1917 (2003).
[CrossRef]

T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, "A pillar-array based two-dimensional photonic crystal microcavity," Appl. Phys. Lett. 94, 241110 (2009).
[CrossRef]

M. Tokushima, H. Yamada, and Y. Arakawa,"1.5-?m-wavelength light guiding in waveguides in square-latticeof-rod photonic crystal slab," Appl. Phys. Lett. 84, 4298 (2004).
[CrossRef]

X. Ao, L. Liu, L. Wosinski, and S. He, "Polarization beam splitter based on a two-dimensional photonic crystal of pillar type," Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

A. Kok, E. J. Geluk, B. Docter, J. van der Tol, R. Nozel, M. Smit, and R. Baets, "Transmission of pillar-based photonic crystal waveguides in InP technology," Appl. Phys. Lett. 91, 201109 (2007).
[CrossRef]

T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, "Highly confined mode above the light line in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 93, 241105 (2008).
[CrossRef]

J. Appl. Phys. (1)

U. Philipose, T. Xu, S. Yang, P. Sun, and H. E. Ruda, Y. Q. Wang, and K. L. Kavanagh, "Enhancement of band edge luminescence in ZnSe nanowires," J. Appl. Phys. 100, 084316 (2006).
[CrossRef]

Nanotechnology (1)

T. Matensson, M. Borgstrom, W. Seifert, B. J. Ohlsson and L. Samuelson, "Fabrication of individually seeded nanowire arrays by vapour liquid solid growth," Nanotechnology 14, 1255-1258 (2003).
[CrossRef]

Nat. Photonics (1)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an untrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1,49-52 (2007).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, "Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations," Phys. Rev. B 75, 125104 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM images of a heterogeneous pillar-array microcavity. (a) top view; (b) an image taken at a slanting angle.

Fig. 2.
Fig. 2.

(a) A schematic plot of vertical cross section of the pillar array cavity. The vertical (b) and horizontal (c) cross sections of the fundamental mode’s electric field component Ez . The vertical cross section is taken at the position shown as the dash line in the horizontal cross section image and vice versa.

Fig. 3.
Fig. 3.

(a) A schematic of the transmission measurement setup and a transmission spectrum measured. (b) The transmission spectra taken as the cavity was immersed into optical fluids of different refractive indices. (c) The peak positions of the transmission spectra in (b) is shown. The experimental data is compared to the 3D FDTD simulation. To ease the comparison, we assume both data have the same starting point at n=1.392.

Fig. 4.
Fig. 4.

The dependence of quality factor and sensitivity of the cavity on the aspect ratio of the pillars. To characterize the sensitivity, we used the peak wavelength shift when the cavity is immersed into an optical fluid with refractive index of 1.392. In the plot, the filled symbols stand for the simulation data, while the unfilled stand for experimental data.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F = V pillar 1 / 2 × ε r ( r ) E ( r ) 2 d V V 1 / 2 × ε r ( r ) E ( r ) 2 d V ,

Metrics