Abstract

Transmission type color filters based on a thin film Ag-SiO2-Ag etalon were built on a quartz substrate, enabling the infrared suppressed transmission and large effective area. They were designed by taking into account the influence of the dispersion characteristics and the thickness of the silver metal. Three different color filters were devised: The cavity length for the red, green and blue filter was 160 nm, 130 nm, and 100 nm respectively, while the metal layer was fixed at 25 nm. The observed spectral pass band was centered at 650 nm, 555 nm, and 480 nm for the red, green, and blue device; the corresponding bandwidth was about 120 nm, 100 nm, and 120 nm; and the peak transmission was all ~60%. For the oblique light incidence the angular dependence of the peak relative transmission was measured to be ~1%/degree. The spectral response of the device was also analyzed for two different polarizations as the tilt angle varied up to 12o, and it was found to be hardly polarization dependent. Finally, as for the positional dependence the relative transmission and the center wavelength were found to vary within 10% and 5 nm respectively over an effective area of 4x4 cm2.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F.-J. Ko and H.-P. D. Shieh, “High-efficiency micro-optical color filter for liquid-crystal projection system applications,” Appl. Opt. 39(7), 1159–1163 (2000).
    [CrossRef]
  2. Y. Cho, Y. K. Choi, and S. H. Sohn, “Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter,” Appl. Phys. Lett., vol. 89, no. 5, pp. 051102-1~051102-3, 2006.
  3. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
    [CrossRef]
  4. Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16(4), 2374–2380 (2008).
    [CrossRef] [PubMed]
  5. Y. Inaba, M. Kasano, K. Tanaka, and T. Yamaguchi, “Degradation-free MOS image sensor with photonic crystal color filter,” IEEE Electron Device Lett. 27(6), 457–459 (2006).
    [CrossRef]
  6. S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev. 55(3), 754–759 (2008).
    [CrossRef]
  7. G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys. 115(2-3), 362–367 (2004).
    [CrossRef]
  8. E. D. Palik, Handbook of Optical Constants of Solids III (Academic Press, San Diego, USA, 1998).
  9. M. Born, and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).
  10. J. V. Erps, L. Desmet, M. Vervaeke, E. Stijns, and H. Thienpont, “Investigation on metal reflection coatings of free-space optical interconnect components with integrated fan-out DOEs,” Proc. the 2003 Symposium of the IEEE/LEOS Benelux Chapter, pp. 277-280, 2003.

2008

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev. 55(3), 754–759 (2008).
[CrossRef]

Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16(4), 2374–2380 (2008).
[CrossRef] [PubMed]

2006

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

Y. Inaba, M. Kasano, K. Tanaka, and T. Yamaguchi, “Degradation-free MOS image sensor with photonic crystal color filter,” IEEE Electron Device Lett. 27(6), 457–459 (2006).
[CrossRef]

2004

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys. 115(2-3), 362–367 (2004).
[CrossRef]

2000

Correia, J. H.

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys. 115(2-3), 362–367 (2004).
[CrossRef]

Hane, K.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

Inaba, Y.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev. 55(3), 754–759 (2008).
[CrossRef]

Y. Inaba, M. Kasano, K. Tanaka, and T. Yamaguchi, “Degradation-free MOS image sensor with photonic crystal color filter,” IEEE Electron Device Lett. 27(6), 457–459 (2006).
[CrossRef]

Kanamori, Y.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

Kasano, M.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev. 55(3), 754–759 (2008).
[CrossRef]

Y. Inaba, M. Kasano, K. Tanaka, and T. Yamaguchi, “Degradation-free MOS image sensor with photonic crystal color filter,” IEEE Electron Device Lett. 27(6), 457–459 (2006).
[CrossRef]

Kim, S. H.

Ko, F.-J.

Koyama, S.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev. 55(3), 754–759 (2008).
[CrossRef]

Lee, H. S.

Lee, K. D.

Lee, S. S.

Martins, J. S.

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys. 115(2-3), 362–367 (2004).
[CrossRef]

Minas, G.

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys. 115(2-3), 362–367 (2004).
[CrossRef]

Murata, T.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev. 55(3), 754–759 (2008).
[CrossRef]

Park, J. D.

Ribeiro, J. C.

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys. 115(2-3), 362–367 (2004).
[CrossRef]

Shieh, H.-P. D.

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

Tanaka, K.

Y. Inaba, M. Kasano, K. Tanaka, and T. Yamaguchi, “Degradation-free MOS image sensor with photonic crystal color filter,” IEEE Electron Device Lett. 27(6), 457–459 (2006).
[CrossRef]

Wolffenbuttel, R. F.

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys. 115(2-3), 362–367 (2004).
[CrossRef]

Yamaguchi, T.

Y. Inaba, M. Kasano, K. Tanaka, and T. Yamaguchi, “Degradation-free MOS image sensor with photonic crystal color filter,” IEEE Electron Device Lett. 27(6), 457–459 (2006).
[CrossRef]

Yoon, Y. T.

Appl. Opt.

IEEE Electron Device Lett.

Y. Inaba, M. Kasano, K. Tanaka, and T. Yamaguchi, “Degradation-free MOS image sensor with photonic crystal color filter,” IEEE Electron Device Lett. 27(6), 457–459 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

IEEE Trans. Electron. Dev.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev. 55(3), 754–759 (2008).
[CrossRef]

Opt. Express

Sens. Actuators A Phys.

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys. 115(2-3), 362–367 (2004).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids III (Academic Press, San Diego, USA, 1998).

M. Born, and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).

J. V. Erps, L. Desmet, M. Vervaeke, E. Stijns, and H. Thienpont, “Investigation on metal reflection coatings of free-space optical interconnect components with integrated fan-out DOEs,” Proc. the 2003 Symposium of the IEEE/LEOS Benelux Chapter, pp. 277-280, 2003.

Y. Cho, Y. K. Choi, and S. H. Sohn, “Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter,” Appl. Phys. Lett., vol. 89, no. 5, pp. 051102-1~051102-3, 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Proposed Fabry-Perot etalon based color filter.

Fig. 2
Fig. 2

Calculated transfer characteristics of the proposed color filter with and without the substrate.

Fig. 3
Fig. 3

Scanning electron micrograph of the fabricated color filter (Dev B).

Fig. 4
Fig. 4

(a) Measured spectral response and their images (b) Calculated optical absorption and reflection (Dev R).

Fig. 5
Fig. 5

Measured angular dependence of the blue color filter.

Fig. 6
Fig. 6

Simulated transmission of the blue color filter for different polarizations with various incidence angles (0o, 4o, 8o, 12o).

Fig. 7
Fig. 7

Positional dependence of the relative transmission and the center wavelength.

Metrics