Abstract

Dispersive waves were generated from a photonic crystal fiber by higher-order mode excitation and the dependence of their wavelengths on polarization was measured. The dispersion properties of various spatial modes with different symmetry numbers were calculated theoretically and four combinations of linearly-polarizing higher-order modes were identified. The phase-matching conditions of dispersive waves for higher-order modes were calculated and it was found that the wavelengths of dispersive waves with identical spatial modes depended on polarization directions. The dependence measured experimentally agreed well with results obtained by theoretical calculations.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25,25-27 (2000).
    [CrossRef]
  2. J. M. Dudley and G. Genty, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78,1135-1184 (2006).
    [CrossRef]
  3. A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87,203901 (2001).
    [CrossRef] [PubMed]
  4. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51,2602-2607 (1995).
    [CrossRef] [PubMed]
  5. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12,124-135 (2004).
    [CrossRef] [PubMed]
  6. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19,765-771 (2002).
    [CrossRef]
  7. R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, "Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber," Opt. Express 16,2147-2152 (2008).
    [CrossRef] [PubMed]
  8. C. J. Benton, A. V. Gorbach, and D. V. Skryabin, "Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires," Phys. Rev. A 78,033818 (2008).
    [CrossRef]
  9. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, London, 2005).
    [CrossRef]
  10. D. Gloge, "Weakly guiding fibers," Appl. Opt. 10,2252-2258 (1971).
    [CrossRef] [PubMed]

2008 (2)

R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, "Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber," Opt. Express 16,2147-2152 (2008).
[CrossRef] [PubMed]

C. J. Benton, A. V. Gorbach, and D. V. Skryabin, "Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires," Phys. Rev. A 78,033818 (2008).
[CrossRef]

2006 (1)

J. M. Dudley and G. Genty, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78,1135-1184 (2006).
[CrossRef]

2004 (1)

2002 (1)

2001 (1)

A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87,203901 (2001).
[CrossRef] [PubMed]

2000 (1)

1995 (1)

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51,2602-2607 (1995).
[CrossRef] [PubMed]

1971 (1)

Akhmediev, N.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51,2602-2607 (1995).
[CrossRef] [PubMed]

Benton, C. J.

C. J. Benton, A. V. Gorbach, and D. V. Skryabin, "Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires," Phys. Rev. A 78,033818 (2008).
[CrossRef]

Cherif, R.

Coen, S.

Cristiani, I.

Degiorgio, V.

Dudley, J. M.

Eggleton, B. J.

Genty, G.

J. M. Dudley and G. Genty, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78,1135-1184 (2006).
[CrossRef]

Gloge, D.

Gorbach, A. V.

C. J. Benton, A. V. Gorbach, and D. V. Skryabin, "Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires," Phys. Rev. A 78,033818 (2008).
[CrossRef]

Grossard, N.

Herrmann, J.

A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87,203901 (2001).
[CrossRef] [PubMed]

Husakou, A. V.

A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87,203901 (2001).
[CrossRef] [PubMed]

Karlsson, M.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51,2602-2607 (1995).
[CrossRef] [PubMed]

Maillotte, H.

Provino, L.

Ranka, J. K.

Skryabin, D. V.

C. J. Benton, A. V. Gorbach, and D. V. Skryabin, "Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires," Phys. Rev. A 78,033818 (2008).
[CrossRef]

Stentz, A. J.

Tartara, L.

Tediosi, R.

Windeler, R. S.

Zghal, M.

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (2)

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51,2602-2607 (1995).
[CrossRef] [PubMed]

C. J. Benton, A. V. Gorbach, and D. V. Skryabin, "Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires," Phys. Rev. A 78,033818 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87,203901 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley and G. Genty, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78,1135-1184 (2006).
[CrossRef]

Other (1)

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, London, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Electric field vectors of fundamental (p3) mode. (b) Electric field vectors of higher-order modes (p1, p2, p5, and p6). (c) Electric field vectors of four LP11 higher-order modes.

Fig. 2.
Fig. 2.

Group velocity dispersion versus wavelength for various spatial modes.

Fig. 3.
Fig. 3.

Dispersive wave wavelength versus pump wavelength for higher-order modes.

Fig. 4.
Fig. 4.

The spectra of an input pulse (black curve) and an output pulse (red curve) from a PCF for a fundamental mode. Insets show the cross section of the PCF (right) and the picture of the spatial pattern of a fundamental mode (left).

Fig. 5.
Fig. 5.

The spectra of four different LP11 higher-order dispersive waves. Insets show the pictures of spatial modes and the combinations of modes with different symmetry numbers. Arrows indicate the polarization directions of various modes.

Fig. 6.
Fig. 6.

The spectra of soliton pulses corresponding to four different LP11 higher-order dispersive waves shown in Fig. 5.

Tables (1)

Tables Icon

Table 1. The normalized effective area A eff of each mode in μm2 at 800 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β 2 ( ω ) = d 2 β ( ω ) d ω 2 = λ 3 2 π c 2 d 2 n eff , r ( λ ) d λ 2 ,
n eff , r ( ω ) ω / c ( ω ω 0 ) / ν g ( ω 0 ) n eff , r ( ω 0 ) ω 0 / c = 0 .
A eff = ( E z 2 dS ) 2 E z 4 dS ,

Metrics