Abstract

We propose and experimentally demonstrate a new scheme for flexible multiwavelength conversion that uses the genetic algorithm with two target functions to optimize the nonperiodic optical superlattice (NOS). Compared to the widely used aperiodic optical superlattice approach, our scheme can achieve ~15% higher overall conversion efficiency, better spectral fidelity, and allows for further improvement of the performances if a larger genetic pool is used. Numerical analysis also shows that the resulting conversion efficiency spectrum is rather insensitive to typical fabrication errors, and is distorted under pump depletion in a similar scale as that of a periodic quasi-phase matching grating. Experimentally measured conversion efficiency spectra of the two fabricated NOS devices are in good agreement with the target curves.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
    [CrossRef]
  2. J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Red, yellow, green and blue four-color light from a single, aperiodically poled LiTaO3 crystal,” Appl. Phys. B 78(3-4), 265–267 (2004).
    [CrossRef]
  3. W.-C. Hsu, Y.-Y. Lai, C.-J. Lai, L.-H. Peng, C.-L. Pan, and A. H. Kung, “Generation of multi-octave-spanning laser harmonics by cascaded quasi-phase matching in a monolithic ferroelectric crystal,” Opt. Lett. 34(22), 3496–3498 (2009).
    [CrossRef] [PubMed]
  4. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase- matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
    [CrossRef]
  5. Y. Qin, C. Zhang, D. Zhu, Y. Zhu, H. Guo, G. You, and S. Tang, “Engineered nonlinear photonic quasicrystals for multi-frequency terahertz manipulation,” Opt. Express 17(14), 11558–11564 (2009).
    [CrossRef] [PubMed]
  6. H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79(6), 728–730 (2001).
    [CrossRef]
  7. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO(3) waveguides,” Opt. Lett. 24(16), 1157–1159 (1999).
    [CrossRef]
  8. C. R. Fernández-Pousa and J. Capmany, “Dammann Grating Design of Domain-Engineered Lithium niobate for equalized wavelength conversion grids,” IEEE Photon. Technol. Lett. 17(5), 1037–1039 (2005).
    [CrossRef]
  9. M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, Y. Nishida, K. Magari, and H. Suzuki, “Unequally spaced multiple mid-infrared wavelength generation using an engineered quasi-phase-matching device,” Opt. Lett. 32(23), 3388–3390 (2007).
    [CrossRef] [PubMed]
  10. Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Lett. 27(24), 2191–2193 (2002).
    [CrossRef]
  11. X. Chen, F. Wu, X. Zeng, Y. Chen, Y. Xia, and Y. Chen, “Multiple quasi–phase-matching in a nonperiodic domain-inverted optical superlattice,” Phys. Rev. A 69(1), 013818 (2004).
    [CrossRef]
  12. R. L. Haupt, and S. E. Haupt, Practical Genetic Algorithms, 2nd edition, WILEY, (New-York, 2004).
  13. R. C. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
    [CrossRef]
  14. G. Cormier, R. Boudreau, and S. Theriault, “Real-coded genetic algorithm for Bragg grating parameter synthesis,” J. Opt. Soc. Am. B 18(12), 1771–1776 (2001).
    [CrossRef]

2009 (2)

2007 (2)

2005 (2)

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase- matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[CrossRef]

C. R. Fernández-Pousa and J. Capmany, “Dammann Grating Design of Domain-Engineered Lithium niobate for equalized wavelength conversion grids,” IEEE Photon. Technol. Lett. 17(5), 1037–1039 (2005).
[CrossRef]

2004 (2)

X. Chen, F. Wu, X. Zeng, Y. Chen, Y. Xia, and Y. Chen, “Multiple quasi–phase-matching in a nonperiodic domain-inverted optical superlattice,” Phys. Rev. A 69(1), 013818 (2004).
[CrossRef]

J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Red, yellow, green and blue four-color light from a single, aperiodically poled LiTaO3 crystal,” Appl. Phys. B 78(3-4), 265–267 (2004).
[CrossRef]

2002 (1)

2001 (2)

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79(6), 728–730 (2001).
[CrossRef]

G. Cormier, R. Boudreau, and S. Theriault, “Real-coded genetic algorithm for Bragg grating parameter synthesis,” J. Opt. Soc. Am. B 18(12), 1771–1776 (2001).
[CrossRef]

1999 (1)

1984 (1)

R. C. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
[CrossRef]

Asobe, M.

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, Y. Nishida, K. Magari, and H. Suzuki, “Unequally spaced multiple mid-infrared wavelength generation using an engineered quasi-phase-matching device,” Opt. Lett. 32(23), 3388–3390 (2007).
[CrossRef] [PubMed]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase- matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[CrossRef]

Boudreau, R.

Brener, I.

Capmany, J.

C. R. Fernández-Pousa and J. Capmany, “Dammann Grating Design of Domain-Engineered Lithium niobate for equalized wavelength conversion grids,” IEEE Photon. Technol. Lett. 17(5), 1037–1039 (2005).
[CrossRef]

Chen, X.

X. Chen, F. Wu, X. Zeng, Y. Chen, Y. Xia, and Y. Chen, “Multiple quasi–phase-matching in a nonperiodic domain-inverted optical superlattice,” Phys. Rev. A 69(1), 013818 (2004).
[CrossRef]

Chen, Y.

X. Chen, F. Wu, X. Zeng, Y. Chen, Y. Xia, and Y. Chen, “Multiple quasi–phase-matching in a nonperiodic domain-inverted optical superlattice,” Phys. Rev. A 69(1), 013818 (2004).
[CrossRef]

X. Chen, F. Wu, X. Zeng, Y. Chen, Y. Xia, and Y. Chen, “Multiple quasi–phase-matching in a nonperiodic domain-inverted optical superlattice,” Phys. Rev. A 69(1), 013818 (2004).
[CrossRef]

Chou, M. H.

Cormier, G.

Dong, B. Z.

Du, J.

J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Red, yellow, green and blue four-color light from a single, aperiodically poled LiTaO3 crystal,” Appl. Phys. B 78(3-4), 265–267 (2004).
[CrossRef]

Eckardt, R. C.

R. C. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
[CrossRef]

Fan, F. C.

Fejer, M. M.

Fernández-Pousa, C. R.

C. R. Fernández-Pousa and J. Capmany, “Dammann Grating Design of Domain-Engineered Lithium niobate for equalized wavelength conversion grids,” IEEE Photon. Technol. Lett. 17(5), 1037–1039 (2005).
[CrossRef]

Gu, B. Y.

Guo, H.

He, J. L.

J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Red, yellow, green and blue four-color light from a single, aperiodically poled LiTaO3 crystal,” Appl. Phys. B 78(3-4), 265–267 (2004).
[CrossRef]

Hsu, W.-C.

Huang, Y. C.

Hum, D. S.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[CrossRef]

Kung, A. H.

Lai, C.-J.

Lai, Y.-Y.

Lee, Y. W.

Liao, J.

J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Red, yellow, green and blue four-color light from a single, aperiodically poled LiTaO3 crystal,” Appl. Phys. B 78(3-4), 265–267 (2004).
[CrossRef]

Liu, H.

J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Red, yellow, green and blue four-color light from a single, aperiodically poled LiTaO3 crystal,” Appl. Phys. B 78(3-4), 265–267 (2004).
[CrossRef]

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79(6), 728–730 (2001).
[CrossRef]

Magari, K.

Ming, N. B.

J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Red, yellow, green and blue four-color light from a single, aperiodically poled LiTaO3 crystal,” Appl. Phys. B 78(3-4), 265–267 (2004).
[CrossRef]

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79(6), 728–730 (2001).
[CrossRef]

Miyazawa, H.

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase- matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[CrossRef]

Nishida, Y.

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, Y. Nishida, K. Magari, and H. Suzuki, “Unequally spaced multiple mid-infrared wavelength generation using an engineered quasi-phase-matching device,” Opt. Lett. 32(23), 3388–3390 (2007).
[CrossRef] [PubMed]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase- matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[CrossRef]

Pan, C.-L.

Parameswaran, K. R.

Peng, L.-H.

Qin, Y.

Reintjes, J.

R. C. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
[CrossRef]

Suzuki, H.

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, Y. Nishida, K. Magari, and H. Suzuki, “Unequally spaced multiple mid-infrared wavelength generation using an engineered quasi-phase-matching device,” Opt. Lett. 32(23), 3388–3390 (2007).
[CrossRef] [PubMed]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase- matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[CrossRef]

Tadanaga, O.

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, Y. Nishida, K. Magari, and H. Suzuki, “Unequally spaced multiple mid-infrared wavelength generation using an engineered quasi-phase-matching device,” Opt. Lett. 32(23), 3388–3390 (2007).
[CrossRef] [PubMed]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase- matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[CrossRef]

Tang, S.

Theriault, S.

Umeki, T.

Wang, H. T.

J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Red, yellow, green and blue four-color light from a single, aperiodically poled LiTaO3 crystal,” Appl. Phys. B 78(3-4), 265–267 (2004).
[CrossRef]

Wu, F.

X. Chen, F. Wu, X. Zeng, Y. Chen, Y. Xia, and Y. Chen, “Multiple quasi–phase-matching in a nonperiodic domain-inverted optical superlattice,” Phys. Rev. A 69(1), 013818 (2004).
[CrossRef]

Xia, Y.

X. Chen, F. Wu, X. Zeng, Y. Chen, Y. Xia, and Y. Chen, “Multiple quasi–phase-matching in a nonperiodic domain-inverted optical superlattice,” Phys. Rev. A 69(1), 013818 (2004).
[CrossRef]

Xu, F.

J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Red, yellow, green and blue four-color light from a single, aperiodically poled LiTaO3 crystal,” Appl. Phys. B 78(3-4), 265–267 (2004).
[CrossRef]

Yanagawa, T.

You, G.

Zeng, X.

X. Chen, F. Wu, X. Zeng, Y. Chen, Y. Xia, and Y. Chen, “Multiple quasi–phase-matching in a nonperiodic domain-inverted optical superlattice,” Phys. Rev. A 69(1), 013818 (2004).
[CrossRef]

Zhang, C.

Y. Qin, C. Zhang, D. Zhu, Y. Zhu, H. Guo, G. You, and S. Tang, “Engineered nonlinear photonic quasicrystals for multi-frequency terahertz manipulation,” Opt. Express 17(14), 11558–11564 (2009).
[CrossRef] [PubMed]

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79(6), 728–730 (2001).
[CrossRef]

Zhu, D.

Zhu, S. N.

J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Red, yellow, green and blue four-color light from a single, aperiodically poled LiTaO3 crystal,” Appl. Phys. B 78(3-4), 265–267 (2004).
[CrossRef]

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79(6), 728–730 (2001).
[CrossRef]

Zhu, Y.

Zhu, Y. Y.

J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Red, yellow, green and blue four-color light from a single, aperiodically poled LiTaO3 crystal,” Appl. Phys. B 78(3-4), 265–267 (2004).
[CrossRef]

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79(6), 728–730 (2001).
[CrossRef]

Appl. Phys. B (1)

J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Red, yellow, green and blue four-color light from a single, aperiodically poled LiTaO3 crystal,” Appl. Phys. B 78(3-4), 265–267 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett. 79(6), 728–730 (2001).
[CrossRef]

C. R. Phys. (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. C. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
[CrossRef]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase- matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. R. Fernández-Pousa and J. Capmany, “Dammann Grating Design of Domain-Engineered Lithium niobate for equalized wavelength conversion grids,” IEEE Photon. Technol. Lett. 17(5), 1037–1039 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

X. Chen, F. Wu, X. Zeng, Y. Chen, Y. Xia, and Y. Chen, “Multiple quasi–phase-matching in a nonperiodic domain-inverted optical superlattice,” Phys. Rev. A 69(1), 013818 (2004).
[CrossRef]

Other (1)

R. L. Haupt, and S. E. Haupt, Practical Genetic Algorithms, 2nd edition, WILEY, (New-York, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The target conversion efficiency spectra with (a) three discrete peaks with unequal spacing and a common height, and (b) five discrete peaks distributed in a V-shape, respectively.

Fig. 2
Fig. 2

Normalized conversion efficiency spectra of NOS for target spectrum S2. Using target function(s) T 1(dash-dot), T 2(dotted) and T 1&T 2(solid).

Fig. 3
Fig. 3

Normalized conversion efficiency spectra of the NOS (solid) and AOS (dashed) devices designed for the target spectra (a) S 1, and (b) S 2, respectively.

Fig. 4
Fig. 4

Normalized conversion efficiency spectra of the (a) NOS, and (b) AOS devices designed for the target spectrum S 1 derived at different (a) number of individuals, and (b) internal weighting factors of the SA objective function, respectively.

Fig. 5
Fig. 5

Normalized conversion efficiency spectra of the two NOS devices designed for target spectra (a) S 1, and (b) S 2, before (solid) and after (dashed) the introduction of a uniformly overpoled error of Δ x = 0.7 μm and a normally distributed domain length error with a standard deviation of x = 0.7 μm, respectively. The values near the peaks represent the reduction of normalized efficiencies due to the domain errors.

Fig. 6
Fig. 6

Conversion efficiency spectra (solid) of a NOS device designed for the target spectrum S 1 at peak conversion efficiencies η S H G of (a) 51%, and (b) 91%, respectively. The peaks of the reference spectra (dashed) derived at low conversion efficiency are normalized to the corresponding η S H G values.

Fig. 7
Fig. 7

Conversion efficiency spectral area ratio of target main lobes r e f f versus the peak SHG conversion efficiency η S H G for an NOS device (open circles) and a purely periodic QPM grating (solid), respectively.

Fig. 8
Fig. 8

Experimentally measured conversion efficiency spectra (solid) of the NOS devices designed for the target PM spectra (a) S 1, and (b) S 2, respectively.

Tables (4)

Tables Icon

Table 1 Simulation results when designing the PM spectrum S 1 consisting of three discrete peaks with unequal spacing and equal height using NOS (columns 3-5) and AOS (column 6) schemes.

Tables Icon

Table 2 Simulation results when designing the PM spectrum S 2 consisting of five discrete peaks distributed in a V-shape using NOS (columns 3-5) and AOS (column 6) schemes.

Tables Icon

Table 3 Dependences of the NOS performances on the number of individuals in designing the target spectrum S1.

Tables Icon

Table 4 Dependences of the AOS performances on the internal weighting factors of the SA objective function in designing the target PM spectrum S 1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η ( λ ) = η n o r m ( λ ) P ω d e f f 2 ( λ ) , d e f f ( λ ) = 1 L |   0   L d ˜ ( x ) e i Δ k ( λ ) x d x |
T 1 = α = 1 M [ η α η α ( 0 ) ]   2
T 2 = T 1 + α = 1 M | η α η ^ α ( 0 ) |

Metrics