Abstract

Optimization of signal-to-noise ratio is an important aspect in the design of optical heterodyne detection systems such as a coherent Doppler lidar (CDL). In a CDL, optimal performance is achieved when the noise in the detector signal is dominated by local oscillator shot-noise. Most modern CDL systems are built using rugged and cost-efficient fiber optic components. Unfortunately, leakage signals such as residual reflections inherent within fiber components (e.g. circulator) can introduce phase-induced intensity noise (PIIN) to the Doppler spectrum in a CDL. Such excess noise may be a few orders of magnitude above the shot-noise level within the relevant CDL frequency bandwidth – corrupting the measurement of typically weak backscattered signals. In this study, observation of PIIN in a fiber-based CDL with a master-oscillator power-amplifier tapered semiconductor laser source is reported. Furthermore, we experimentally demonstrate what we believe is a newly proposed method using a simple polarization scheme to reduce PIIN by more than an order of magnitude.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Menzies and R. M. Hardesty, “Coherent Doppler Lidar for Measurements of Wind Fields,” Proc. IEEE 77(3), 449–462 (1989).
    [CrossRef]
  2. R. M. Huffaker and R. M. Hardesty, “Remote sensing of the atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
    [CrossRef]
  3. http://www.naturalpower.com/zephir-laser-anemometer
  4. http://www.lidarwindtechnologies.com/
  5. http://www.catchthewindinc.com/products/vindicator
  6. R. S. Hansen and C. Pedersen, “All semiconductor laser Doppler anemometer at 1.55 microm,” Opt. Express 16(22), 18288–18295 (2008).
    [CrossRef] [PubMed]
  7. P. J. Rodrigo, and C. Pedersen, “Doppler wind lidar using a MOPA semiconductor laser at stable single-frequency operation,” In: Technical Digest. 19th International Congress on Photonics in Europe, CLEO/Europe-EQEC 2009.
  8. G. C. Dente and M. L. Tilton, “Modeling Multiple-Longitudinal-Mode Dynamics in Semiconductor Lasers,” IEEE J. Quantum Electron. 34(2), 325–335 (1998).
    [CrossRef]
  9. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-Noise Narrow-Linewidth Fiber Laser at 1550 nm,” J. Lightwave Technol. 22(1), 57–62 (2004).
    [CrossRef]
  10. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46(11), 1953–1962 (2007).
    [CrossRef] [PubMed]
  11. J. F. Holmes and B. J. Rask, “Optimum optical local-oscillator power levels for coherent detection with photodiodes,” Appl. Opt. 34(6), 927–933 (1995).
    [CrossRef] [PubMed]
  12. D. W. Jaynes, J. F. Manwell, J. G. McGowan, W. M. Stein, and A. L. Rogers, “MTC Final Progress Report: LIDAR,” Renewable Energy Research Laboratory, July 19 (2007).
  13. S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, “Operating Characteristics of a High-Power Monolithically Integrated Flared Amplifier Master Oscillator Power Amplifier,” IEEE J. Quantum Electron. 29(6), 2052–2057 (1993).
    [CrossRef]
  14. A. Egan, C. Z. Ning, J. V. Moloney, R. A. Indik, M. W. Wright, D. J. Bossert, and J. G. McInerney, “Dynamic Instabilities in Master Oscillator Power Amplifier Semiconductor Lasers,” IEEE J. Quantum Electron. 34(1), 166–170 (1998).
    [CrossRef]
  15. C. J. Karlsson, F. Å. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39(21), 3716–3726 (2000).
    [CrossRef]
  16. M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
    [CrossRef]
  17. U. P. Oppenheim and Y. Feiner, “Polarization of the reflectivity of paints and other rough surfaces in the infrared,” Appl. Opt. 34(10), 1664–1671 (1995).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

2004 (1)

2000 (1)

1998 (3)

G. C. Dente and M. L. Tilton, “Modeling Multiple-Longitudinal-Mode Dynamics in Semiconductor Lasers,” IEEE J. Quantum Electron. 34(2), 325–335 (1998).
[CrossRef]

A. Egan, C. Z. Ning, J. V. Moloney, R. A. Indik, M. W. Wright, D. J. Bossert, and J. G. McInerney, “Dynamic Instabilities in Master Oscillator Power Amplifier Semiconductor Lasers,” IEEE J. Quantum Electron. 34(1), 166–170 (1998).
[CrossRef]

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

1996 (1)

R. M. Huffaker and R. M. Hardesty, “Remote sensing of the atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
[CrossRef]

1995 (2)

1993 (1)

S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, “Operating Characteristics of a High-Power Monolithically Integrated Flared Amplifier Master Oscillator Power Amplifier,” IEEE J. Quantum Electron. 29(6), 2052–2057 (1993).
[CrossRef]

1989 (1)

R. T. Menzies and R. M. Hardesty, “Coherent Doppler Lidar for Measurements of Wind Fields,” Proc. IEEE 77(3), 449–462 (1989).
[CrossRef]

Ando, T.

Asaka, K.

Bossert, D. J.

A. Egan, C. Z. Ning, J. V. Moloney, R. A. Indik, M. W. Wright, D. J. Bossert, and J. G. McInerney, “Dynamic Instabilities in Master Oscillator Power Amplifier Semiconductor Lasers,” IEEE J. Quantum Electron. 34(1), 166–170 (1998).
[CrossRef]

Dente, G. C.

G. C. Dente and M. L. Tilton, “Modeling Multiple-Longitudinal-Mode Dynamics in Semiconductor Lasers,” IEEE J. Quantum Electron. 34(2), 325–335 (1998).
[CrossRef]

Dzurko, K.

S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, “Operating Characteristics of a High-Power Monolithically Integrated Flared Amplifier Master Oscillator Power Amplifier,” IEEE J. Quantum Electron. 29(6), 2052–2057 (1993).
[CrossRef]

Egan, A.

A. Egan, C. Z. Ning, J. V. Moloney, R. A. Indik, M. W. Wright, D. J. Bossert, and J. G. McInerney, “Dynamic Instabilities in Master Oscillator Power Amplifier Semiconductor Lasers,” IEEE J. Quantum Electron. 34(1), 166–170 (1998).
[CrossRef]

Feiner, Y.

Geng, J.

Hansen, R. S.

Hardesty, R. M.

R. M. Huffaker and R. M. Hardesty, “Remote sensing of the atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
[CrossRef]

R. T. Menzies and R. M. Hardesty, “Coherent Doppler Lidar for Measurements of Wind Fields,” Proc. IEEE 77(3), 449–462 (1989).
[CrossRef]

Harris, M.

C. J. Karlsson, F. Å. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39(21), 3716–3726 (2000).
[CrossRef]

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Hirano, Y.

Holmes, J. F.

Hu, Y.

Huffaker, R. M.

R. M. Huffaker and R. M. Hardesty, “Remote sensing of the atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
[CrossRef]

Indik, R. A.

A. Egan, C. Z. Ning, J. V. Moloney, R. A. Indik, M. W. Wright, D. J. Bossert, and J. G. McInerney, “Dynamic Instabilities in Master Oscillator Power Amplifier Semiconductor Lasers,” IEEE J. Quantum Electron. 34(1), 166–170 (1998).
[CrossRef]

Jiang, S.

Kameyama, S.

Kaneda, Y.

Karlsson, C. J.

C. J. Karlsson, F. Å. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39(21), 3716–3726 (2000).
[CrossRef]

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Lang, R. J.

S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, “Operating Characteristics of a High-Power Monolithically Integrated Flared Amplifier Master Oscillator Power Amplifier,” IEEE J. Quantum Electron. 29(6), 2052–2057 (1993).
[CrossRef]

Letalick, D.

C. J. Karlsson, F. Å. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39(21), 3716–3726 (2000).
[CrossRef]

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

McInerney, J. G.

A. Egan, C. Z. Ning, J. V. Moloney, R. A. Indik, M. W. Wright, D. J. Bossert, and J. G. McInerney, “Dynamic Instabilities in Master Oscillator Power Amplifier Semiconductor Lasers,” IEEE J. Quantum Electron. 34(1), 166–170 (1998).
[CrossRef]

Mehuys, D.

S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, “Operating Characteristics of a High-Power Monolithically Integrated Flared Amplifier Master Oscillator Power Amplifier,” IEEE J. Quantum Electron. 29(6), 2052–2057 (1993).
[CrossRef]

Menzies, R. T.

R. T. Menzies and R. M. Hardesty, “Coherent Doppler Lidar for Measurements of Wind Fields,” Proc. IEEE 77(3), 449–462 (1989).
[CrossRef]

Moloney, J. V.

A. Egan, C. Z. Ning, J. V. Moloney, R. A. Indik, M. W. Wright, D. J. Bossert, and J. G. McInerney, “Dynamic Instabilities in Master Oscillator Power Amplifier Semiconductor Lasers,” IEEE J. Quantum Electron. 34(1), 166–170 (1998).
[CrossRef]

Ning, C. Z.

A. Egan, C. Z. Ning, J. V. Moloney, R. A. Indik, M. W. Wright, D. J. Bossert, and J. G. McInerney, “Dynamic Instabilities in Master Oscillator Power Amplifier Semiconductor Lasers,” IEEE J. Quantum Electron. 34(1), 166–170 (1998).
[CrossRef]

O’Brien, S.

S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, “Operating Characteristics of a High-Power Monolithically Integrated Flared Amplifier Master Oscillator Power Amplifier,” IEEE J. Quantum Electron. 29(6), 2052–2057 (1993).
[CrossRef]

Olsson, F. Å. A.

Oppenheim, U. P.

Parke, R. A.

S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, “Operating Characteristics of a High-Power Monolithically Integrated Flared Amplifier Master Oscillator Power Amplifier,” IEEE J. Quantum Electron. 29(6), 2052–2057 (1993).
[CrossRef]

Pearson, G. N.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Pedersen, C.

Peyghambarian, N.

Rask, B. J.

Scifres, D.

S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, “Operating Characteristics of a High-Power Monolithically Integrated Flared Amplifier Master Oscillator Power Amplifier,” IEEE J. Quantum Electron. 29(6), 2052–2057 (1993).
[CrossRef]

Spiegelberg, C.

Tilton, M. L.

G. C. Dente and M. L. Tilton, “Modeling Multiple-Longitudinal-Mode Dynamics in Semiconductor Lasers,” IEEE J. Quantum Electron. 34(2), 325–335 (1998).
[CrossRef]

Vaughan, J. M.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Waarts, R.

S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, “Operating Characteristics of a High-Power Monolithically Integrated Flared Amplifier Master Oscillator Power Amplifier,” IEEE J. Quantum Electron. 29(6), 2052–2057 (1993).
[CrossRef]

Wadaka, S.

Welch, D. F.

S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, “Operating Characteristics of a High-Power Monolithically Integrated Flared Amplifier Master Oscillator Power Amplifier,” IEEE J. Quantum Electron. 29(6), 2052–2057 (1993).
[CrossRef]

Wright, M. W.

A. Egan, C. Z. Ning, J. V. Moloney, R. A. Indik, M. W. Wright, D. J. Bossert, and J. G. McInerney, “Dynamic Instabilities in Master Oscillator Power Amplifier Semiconductor Lasers,” IEEE J. Quantum Electron. 34(1), 166–170 (1998).
[CrossRef]

Appl. Opt. (4)

IEEE J. Quantum Electron. (3)

G. C. Dente and M. L. Tilton, “Modeling Multiple-Longitudinal-Mode Dynamics in Semiconductor Lasers,” IEEE J. Quantum Electron. 34(2), 325–335 (1998).
[CrossRef]

S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, “Operating Characteristics of a High-Power Monolithically Integrated Flared Amplifier Master Oscillator Power Amplifier,” IEEE J. Quantum Electron. 29(6), 2052–2057 (1993).
[CrossRef]

A. Egan, C. Z. Ning, J. V. Moloney, R. A. Indik, M. W. Wright, D. J. Bossert, and J. G. McInerney, “Dynamic Instabilities in Master Oscillator Power Amplifier Semiconductor Lasers,” IEEE J. Quantum Electron. 34(1), 166–170 (1998).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Opt. Express (1)

Proc. IEEE (2)

R. T. Menzies and R. M. Hardesty, “Coherent Doppler Lidar for Measurements of Wind Fields,” Proc. IEEE 77(3), 449–462 (1989).
[CrossRef]

R. M. Huffaker and R. M. Hardesty, “Remote sensing of the atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
[CrossRef]

Other (5)

http://www.naturalpower.com/zephir-laser-anemometer

http://www.lidarwindtechnologies.com/

http://www.catchthewindinc.com/products/vindicator

P. J. Rodrigo, and C. Pedersen, “Doppler wind lidar using a MOPA semiconductor laser at stable single-frequency operation,” In: Technical Digest. 19th International Congress on Photonics in Europe, CLEO/Europe-EQEC 2009.

D. W. Jaynes, J. F. Manwell, J. G. McGowan, W. M. Stein, and A. L. Rogers, “MTC Final Progress Report: LIDAR,” Renewable Energy Research Laboratory, July 19 (2007).

Supplementary Material (1)

» Media 1: AVI (4514 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of intensity noise spectra. The lowest (blue curve) is the noise spectrum of the detection unit; Model HCA-S preamplified InGaAs photoreceiver, Femto GmbH (i.e. no laser light incident on the photodetector). The middle (green curve) is obtained when ~1 mW of optical power from the MOPA-SL is incident onto the detector. The topmost (red curve) is for the case when ~1 mW beam from a fiber-laser (common lidar source) is detected. The cutoff frequencies for the high-pass and low-pass filters of the detection unit are ~100 kHz and ~25 MHz, respectively.

Fig. 2
Fig. 2

L-I curves of a fiber-coupled MOPA-SL, which compares the output power of the beam emitted from the output end of the fiber pigtail as a function of amplifier current ITA for master oscillator currents IMO = 500 mA (black squares), IMO = 600 mA (red circles), and IMO = 700 mA (green triangles). The laser set temperature was kept at 20 °C.

Fig. 3
Fig. 3

Experimental setup. The fiber-based lidar consists of the fiber-coupled MOPA-SL, a circulator, an inline polarization controller (PC), and a preamplified InGaAs PIN photodetector (PD). The FC/PC tip of the circulator’s port-2 is AR-coated (<0.25%). The PD current is converted to a proportional voltage signal, which is sent to a digital signal processor (DSP) – Field Programmable Gate Array (FPGA) unit that calculates the signal power spectrum. Each fiber segment of the circulator is about 1 m in length. Normally focused to a probe volume in air during CDL operation, the beam collected by a lens (diameter = 75 mm; focal length = 200 mm) is focused ~8 m away to a diffusely reflecting disk rotating at a constant angular speed.

Fig. 4
Fig. 4

Comparison of the levels of phase-to-intensity excess noise (Media 1) for two different LO polarization states. The inline polarization controller at port-2 (see Fig. 3) is adjusted so that the LO polarization state is nearly parallel (red curve) or nearly orthogonal (white curve) to that of the principal leakage signal from port-1 to port-3. In the latter case, optimal suppression of PIIN is achieved – enhancing the SNR of the Doppler signal peak at ~12 MHz, which corresponds to ~9.3 m/s LOS-projected tangential speed of the point on the disk where the transmit beam is focused. The received power due to backreflection is in the order of ~0.1 nW.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S P I I N P L O P R ( τ d 2 τ c ) ,
S P I I N P L O P R ( e ^ L O e ^ R ) 2 ( τ d 2 τ c ) ,

Metrics