Abstract

A two-dimensional anisotropic annular photonic crystal slab structure composed of circular air holes and dielectric rods with finite thickness in a triangular lattice is presented to achieve an absolute photonic band gap. Positive uniaxial crystal Tellurium is introduced to the structure with the extraordinary axis parallel to the extension direction of rods. The role of each geometric parameter is investigated by employing the conjugate-gradient method. A large mid-gap ratio is realized by the parameter optimization. A flat band called as anomalous group velocity within two large gaps is discovered and can be widely applied in many fields. A hybrid structure with GaAs slab and Te rods is designed to achieve a large gap and demonstrates that the annular structure can improve the gap effectively.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43(16), 12772–12789 (1991).
    [CrossRef]
  2. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50(2), 1764–1769 (1994).
    [CrossRef] [PubMed]
  3. S. Y. Zhu, H. Chen, and H. Huang, “Quantum Interference Effects in Spontaneous Emission from an Atom Embedded in a Photonic Band Gap Structure,” Phys. Rev. Lett. 79(2), 205–208 (1997).
    [CrossRef]
  4. T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699–702 (1996).
    [CrossRef]
  5. U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm,” Appl. Phys. Lett. 68(6), 747–749 (1996).
    [CrossRef]
  6. K. Inoue, M. Wada, K. Sakoda, M. Hayashi, T. Fukushima, and A. Yamanaka, “Near-infrared photonic band gap of two-dimensional triangular air-rod lattices as revealed by transmittance measurement,” Phys. Rev. B 53(3), 1010–1013 (1996).
    [CrossRef]
  7. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
    [CrossRef]
  8. Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, “Nanoimprinted circular grating distributed feedback dye laser,” Appl. Phys. Lett. 91(5), 051109 (2007).
    [CrossRef]
  9. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003).
    [CrossRef] [PubMed]
  10. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  11. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
    [CrossRef] [PubMed]
  12. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995), pp.66–93.
  13. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005).
    [CrossRef] [PubMed]
  14. H. Kurt, R. Hao, Y. Chen, J. Feng, J. Blair, D. P. Gaillot, C. Summers, D. S. Citrin, and Z. Zhou, “Design of annular photonic crystal slabs,” Opt. Lett. 33(14), 1614–1616 (2008).
    [CrossRef] [PubMed]
  15. Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
    [CrossRef]
  16. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995), pp.135–155.
  17. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48(11), 8434–8437 (1993).
    [CrossRef]
  18. Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58(7), 3721–3729 (1998).
    [CrossRef]
  19. Y. Xu, R. K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B 17(3), 387–400 (2000).
    [CrossRef]
  20. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
    [CrossRef]
  21. J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31(9), 1235–1237 (2006).
    [CrossRef] [PubMed]
  22. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
    [CrossRef] [PubMed]
  23. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
    [CrossRef] [PubMed]
  24. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express 17(9), 7206–7216 (2009).
    [CrossRef] [PubMed]
  25. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  26. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [CrossRef]
  27. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
    [CrossRef] [PubMed]
  28. K. Sakoda, Optical properties of photonic crystals (Springer, Berlin, Allemagne, 2001).
  29. J. B. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
    [CrossRef]
  30. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
    [CrossRef]
  31. K. Srinivasan and O. Painter, “Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals,” Opt. Express 11(6), 579–593 (2003).
    [CrossRef] [PubMed]
  32. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002).
    [PubMed]
  33. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
    [CrossRef] [PubMed]

2009

Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express 17(9), 7206–7216 (2009).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

J. B. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

2008

2007

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, “Nanoimprinted circular grating distributed feedback dye laser,” Appl. Phys. Lett. 91(5), 051109 (2007).
[CrossRef]

2006

2005

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005).
[CrossRef] [PubMed]

2004

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[CrossRef] [PubMed]

2003

K. Srinivasan and O. Painter, “Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals,” Opt. Express 11(6), 579–593 (2003).
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2002

2000

1999

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

1998

Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58(7), 3721–3729 (1998).
[CrossRef]

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[CrossRef]

1997

S. Y. Zhu, H. Chen, and H. Huang, “Quantum Interference Effects in Spontaneous Emission from an Atom Embedded in a Photonic Band Gap Structure,” Phys. Rev. Lett. 79(2), 205–208 (1997).
[CrossRef]

1996

T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699–702 (1996).
[CrossRef]

U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm,” Appl. Phys. Lett. 68(6), 747–749 (1996).
[CrossRef]

K. Inoue, M. Wada, K. Sakoda, M. Hayashi, T. Fukushima, and A. Yamanaka, “Near-infrared photonic band gap of two-dimensional triangular air-rod lattices as revealed by transmittance measurement,” Phys. Rev. B 53(3), 1010–1013 (1996).
[CrossRef]

1994

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50(2), 1764–1769 (1994).
[CrossRef] [PubMed]

1993

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48(11), 8434–8437 (1993).
[CrossRef]

1991

S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43(16), 12772–12789 (1991).
[CrossRef]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Alerhand, O.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48(11), 8434–8437 (1993).
[CrossRef]

Asakawa, K.

Asano, T.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Baba, T.

Blair, J.

J. B. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

H. Kurt, R. Hao, Y. Chen, J. Feng, J. Blair, D. P. Gaillot, C. Summers, D. S. Citrin, and Z. Zhou, “Design of annular photonic crystal slabs,” Opt. Lett. 33(14), 1614–1616 (2008).
[CrossRef] [PubMed]

Brand, S.

T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699–702 (1996).
[CrossRef]

Brommer, K. D.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48(11), 8434–8437 (1993).
[CrossRef]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Busch, K.

U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm,” Appl. Phys. Lett. 68(6), 747–749 (1996).
[CrossRef]

Capasso, F.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003).
[CrossRef] [PubMed]

Chen, H.

S. Y. Zhu, H. Chen, and H. Huang, “Quantum Interference Effects in Spontaneous Emission from an Atom Embedded in a Photonic Band Gap Structure,” Phys. Rev. Lett. 79(2), 205–208 (1997).
[CrossRef]

Chen, Y.

J. B. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

H. Kurt, R. Hao, Y. Chen, J. Feng, J. Blair, D. P. Gaillot, C. Summers, D. S. Citrin, and Z. Zhou, “Design of annular photonic crystal slabs,” Opt. Lett. 33(14), 1614–1616 (2008).
[CrossRef] [PubMed]

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, “Nanoimprinted circular grating distributed feedback dye laser,” Appl. Phys. Lett. 91(5), 051109 (2007).
[CrossRef]

Cho, A. Y.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003).
[CrossRef] [PubMed]

Citrin, D. S.

J. B. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

H. Kurt, R. Hao, Y. Chen, J. Feng, J. Blair, D. P. Gaillot, C. Summers, D. S. Citrin, and Z. Zhou, “Design of annular photonic crystal slabs,” Opt. Lett. 33(14), 1614–1616 (2008).
[CrossRef] [PubMed]

H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005).
[CrossRef] [PubMed]

Colombelli, R.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003).
[CrossRef] [PubMed]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

De La Rue, R.

T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699–702 (1996).
[CrossRef]

Dodabalapur, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

Ebnali-Heidari, M.

Eggleton, B. J.

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Fan, S.

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Feng, J.

Feng, J. B.

J. B. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

Fujita, M.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Fukushima, T.

K. Inoue, M. Wada, K. Sakoda, M. Hayashi, T. Fukushima, and A. Yamanaka, “Near-infrared photonic band gap of two-dimensional triangular air-rod lattices as revealed by transmittance measurement,” Phys. Rev. B 53(3), 1010–1013 (1996).
[CrossRef]

Gaillot, D. P.

Gmachl, C. F.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003).
[CrossRef] [PubMed]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

Grüning, U.

U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm,” Appl. Phys. Lett. 68(6), 747–749 (1996).
[CrossRef]

Gu, B. Y.

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[CrossRef]

Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58(7), 3721–3729 (1998).
[CrossRef]

Hamachi, Y.

Hao, R.

J. B. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

H. Kurt, R. Hao, Y. Chen, J. Feng, J. Blair, D. P. Gaillot, C. Summers, D. S. Citrin, and Z. Zhou, “Design of annular photonic crystal slabs,” Opt. Lett. 33(14), 1614–1616 (2008).
[CrossRef] [PubMed]

Hayashi, M.

K. Inoue, M. Wada, K. Sakoda, M. Hayashi, T. Fukushima, and A. Yamanaka, “Near-infrared photonic band gap of two-dimensional triangular air-rod lattices as revealed by transmittance measurement,” Phys. Rev. B 53(3), 1010–1013 (1996).
[CrossRef]

Huang, H.

S. Y. Zhu, H. Chen, and H. Huang, “Quantum Interference Effects in Spontaneous Emission from an Atom Embedded in a Photonic Band Gap Structure,” Phys. Rev. Lett. 79(2), 205–208 (1997).
[CrossRef]

Ibanescu, M.

Ikeda, N.

Inoue, K.

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express 17(9), 7206–7216 (2009).
[CrossRef] [PubMed]

K. Inoue, M. Wada, K. Sakoda, M. Hayashi, T. Fukushima, and A. Yamanaka, “Near-infrared photonic band gap of two-dimensional triangular air-rod lattices as revealed by transmittance measurement,” Phys. Rev. B 53(3), 1010–1013 (1996).
[CrossRef]

Ippen, E.

Joannopoulos, J. D.

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[CrossRef] [PubMed]

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48(11), 8434–8437 (1993).
[CrossRef]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

John, S.

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50(2), 1764–1769 (1994).
[CrossRef] [PubMed]

S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43(16), 12772–12789 (1991).
[CrossRef]

Johnson, S. G.

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Kolodziejski, L.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699–702 (1996).
[CrossRef]

Kubo, S.

Kurt, H.

J. B. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

H. Kurt, R. Hao, Y. Chen, J. Feng, J. Blair, D. P. Gaillot, C. Summers, D. S. Citrin, and Z. Zhou, “Design of annular photonic crystal slabs,” Opt. Lett. 33(14), 1614–1616 (2008).
[CrossRef] [PubMed]

H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005).
[CrossRef] [PubMed]

Lee, R. K.

Lehmann, V.

U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm,” Appl. Phys. Lett. 68(6), 747–749 (1996).
[CrossRef]

Li, Z.

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, “Nanoimprinted circular grating distributed feedback dye laser,” Appl. Phys. Lett. 91(5), 051109 (2007).
[CrossRef]

Li, Z. Y.

Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58(7), 3721–3729 (1998).
[CrossRef]

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[CrossRef]

McMillan, J. F.

Meade, R. D.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48(11), 8434–8437 (1993).
[CrossRef]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Meier, M.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

Mekis, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

Monat, C.

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Nalamasu, O.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

Noda, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

O’Faolain, L.

Oda, H.

O'Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Osgood, R. M.

Ottow, S.

U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm,” Appl. Phys. Lett. 68(6), 747–749 (1996).
[CrossRef]

Painter, O.

Panoiu, N. C.

Psaltis, D.

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, “Nanoimprinted circular grating distributed feedback dye laser,” Appl. Phys. Lett. 91(5), 051109 (2007).
[CrossRef]

Quang, T.

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50(2), 1764–1769 (1994).
[CrossRef] [PubMed]

Rappe, A. M.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48(11), 8434–8437 (1993).
[CrossRef]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Sakoda, K.

K. Inoue, M. Wada, K. Sakoda, M. Hayashi, T. Fukushima, and A. Yamanaka, “Near-infrared photonic band gap of two-dimensional triangular air-rod lattices as revealed by transmittance measurement,” Phys. Rev. B 53(3), 1010–1013 (1996).
[CrossRef]

Scherer, A.

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, “Nanoimprinted circular grating distributed feedback dye laser,” Appl. Phys. Lett. 91(5), 051109 (2007).
[CrossRef]

Sergent, A. M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003).
[CrossRef] [PubMed]

Sivco, D. L.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003).
[CrossRef] [PubMed]

Slusher, R. E.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

Soljacic, M.

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

Summers, C.

Summers, C. J.

J. B. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

Takahashi, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Tanaka, Y.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Tennant, D. M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003).
[CrossRef] [PubMed]

Timko, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

Troccoli, M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Wada, M.

K. Inoue, M. Wada, K. Sakoda, M. Hayashi, T. Fukushima, and A. Yamanaka, “Near-infrared photonic band gap of two-dimensional triangular air-rod lattices as revealed by transmittance measurement,” Phys. Rev. B 53(3), 1010–1013 (1996).
[CrossRef]

Wang, J.

Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58(7), 3721–3729 (1998).
[CrossRef]

S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43(16), 12772–12789 (1991).
[CrossRef]

White, T. P.

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Wong, C. W.

Xu, Y.

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Yamanaka, A.

K. Inoue, M. Wada, K. Sakoda, M. Hayashi, T. Fukushima, and A. Yamanaka, “Near-infrared photonic band gap of two-dimensional triangular air-rod lattices as revealed by transmittance measurement,” Phys. Rev. B 53(3), 1010–1013 (1996).
[CrossRef]

Yang, G. Z.

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[CrossRef]

Yang, X.

Yariv, A.

Zhang, Z.

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, “Nanoimprinted circular grating distributed feedback dye laser,” Appl. Phys. Lett. 91(5), 051109 (2007).
[CrossRef]

Zhou, Z.

J. B. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

H. Kurt, R. Hao, Y. Chen, J. Feng, J. Blair, D. P. Gaillot, C. Summers, D. S. Citrin, and Z. Zhou, “Design of annular photonic crystal slabs,” Opt. Lett. 33(14), 1614–1616 (2008).
[CrossRef] [PubMed]

Zhu, S. Y.

S. Y. Zhu, H. Chen, and H. Huang, “Quantum Interference Effects in Spontaneous Emission from an Atom Embedded in a Photonic Band Gap Structure,” Phys. Rev. Lett. 79(2), 205–208 (1997).
[CrossRef]

Appl. Phys. Lett.

U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm,” Appl. Phys. Lett. 68(6), 747–749 (1996).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[CrossRef]

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, “Nanoimprinted circular grating distributed feedback dye laser,” Appl. Phys. Lett. 91(5), 051109 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. B

J. B. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[CrossRef]

Nat. Mater.

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[CrossRef] [PubMed]

Nat. Photonics

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Nature

T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699–702 (1996).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50(2), 1764–1769 (1994).
[CrossRef] [PubMed]

Phys. Rev. B

S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43(16), 12772–12789 (1991).
[CrossRef]

K. Inoue, M. Wada, K. Sakoda, M. Hayashi, T. Fukushima, and A. Yamanaka, “Near-infrared photonic band gap of two-dimensional triangular air-rod lattices as revealed by transmittance measurement,” Phys. Rev. B 53(3), 1010–1013 (1996).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48(11), 8434–8437 (1993).
[CrossRef]

Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58(7), 3721–3729 (1998).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[CrossRef]

S. Y. Zhu, H. Chen, and H. Huang, “Quantum Interference Effects in Spontaneous Emission from an Atom Embedded in a Photonic Band Gap Structure,” Phys. Rev. Lett. 79(2), 205–208 (1997).
[CrossRef]

Science

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003).
[CrossRef] [PubMed]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995), pp.66–93.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995), pp.135–155.

K. Sakoda, Optical properties of photonic crystals (Springer, Berlin, Allemagne, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of annular photonic crystal slab. Triangular lattice with cylindrical dielectric rods of radius r 2 are centered in the holes with radius r 1 in dielectric background and r 1 > r 2. The substrate and cover have the same refractive index. The supercell uses 4 lattice periods in the vertical direction.

Fig. 2
Fig. 2

Mid-gap ratio variation versus dielectric-rod radius r 2. The air-hole radius is taken as 0.47a and 0.48a and the slab thickness is taken as 0.6a and 0.8a, respectively. Tellurium is used as the dielectric of slab and rods here. (a) r 1 = 0.48a, h = 0.6a; (b) r 1 = 0.48a, h = 0.8a; (c) r 1 = 0.47a, h = 0.6a; (d) r 1 = 0.47a, h = 0.8a.

Fig. 3
Fig. 3

Mid-gap ratio variation versus slab thickness r 2. The air-hole radius is taken as 0.47a and 0.48a respectively and dielectric-rod radius is taken as 0. Tellurium is used as the dielectric of slab and rods here.

Fig. 4
Fig. 4

Band structure of anisotropic APC slab with Tellurium material. (a) Band structure of APC with radius of air hole, dielectric rod and slab thickness equal to 0.48a, 0 and 0.6a respectively. (b) Frequency span of the 4th band. (c) Slope of the 4th band.

Fig. 5
Fig. 5

Mid-gap ratio variation versus dielectric-rod radius r 2. The air-hole radius is taken as 0.47a and 0.48a and the slab thickness is taken as 0.6a and 0.8a, respectively. GaAs and Tellurium are used as the dielectric of slab and rod respectively. (a) r 1 = 0.47a, h = 0.6a; (b) r 1 = 0.47a, h = 0.8a. (c) r 1 = 0.48a, h = 0.6a; (d) r 1 = 0.48a, h = 0.8a.

Metrics