Abstract

The optimization of the poor heat transfer characteristics of fluids conventionally employed in solar devices are at present one of the main topics for system efficiency and compactness. In the present work we investigated the optical and thermal properties of nanofluids consisting in aqueous suspensions of single wall carbon nanohorns. The characteristics of these nanofluids were evaluated in view of their use as sunlight absorber fluids in a solar device. The observed nanoparticle-induced differences in optical properties appeared promising, leading to a considerably higher sunlight absorption. We found that the thermal conductivity of the nanofluids was higher than pure water. Both these effects, together with the possible chemical functionalization of carbon nanohorns, make this new kind of nanofluids very interesting for increasing the overall efficiency of the sunlight exploiting device.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83(7), 969–977 (2009).
    [CrossRef]
  2. R. Bertocchi, A. Kribus, and J. Karni, “Experimentally determined optical properties of a polydisperse carbon black cloud for a solar particle receiver,” J. Sol. Energy. Eng. 126(3), 833–841 (2004).
    [CrossRef]
  3. R. Bertocchi, J. Karni, and A. Kribus, “Experimental evaluation of a non-isothermal high temperature solar particle receiver,” Energy 29(5-6), 687–700 (2004).
    [CrossRef]
  4. H. Yuncu, E. Paykoc, and Y. Yener, Solar energy utilization (Kluwer Academic Publishers, 1987).
  5. W. Wu, D. M. France, J. L. Routbort, and S. Choi, “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements,” Heat Transfer Eng. 29(5), 432–460 (2008).
    [CrossRef]
  6. H. Tyagi, P. Phelan, R. Prasher “Predicted efficiency of a nanofluid-based direct absorption solar receiver,” Proceedings ES2007, Energy Sustainability 2007, June 27-30, 2007, Long Beach, California.
  7. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett. 78(6), 718–720 (2001).
    [CrossRef]
  8. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Phys. Rev. Lett . 87, 215502-1-215502-4 (2001).
  9. E. Natarajan and R. Sathish, “Role of nanofluids in solar water heater,” Int. J. Adv. Manuf. Technol. , doi:, http://www.springerlink.com/content/9076620323870634/?p=2e88fcc3359c49d39a4b5dc896d051b4&pi=0 .
    [CrossRef]
  10. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett. 79(14), 2252–2254 (2001).
    [CrossRef]
  11. M. J. Assael, C.-F. Chen, I. Metaxa, and W. A. Wakeham, Thermal Conductivity of Suspensions of Carbon Nanotubes in Water,” Int. J. Thermophys. 25(4), 971–985 (2004).
    [CrossRef]
  12. N. G. Khlebtsov, L. A. Trachuk, and A. G. Mel’nikov, “The Effect of the Size, Shape, and Structure of Metal Nanoparticles on the Dependence of Their Optical Properties on the Refractive Index of a Disperse Medium,” Opt. Spectrosc . 98,77-83 (2005).
  13. J. Hone, M. Whitney, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes,” Synth. Met. 103(1-3), 2498–2499 (1999).
    [CrossRef]
  14. S. Berber, Y. K. Kwon, and D. Tomànek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000).
    [CrossRef]
  15. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, “Nano-aggregates of single-walled graphitic carbon nano-horns,” Chem. Phys. Lett. 309(3-4), 165–170 (1999).
    [CrossRef]
  16. X. Fan, J. Tan, G. Zhang, and F. Zhang, “Isolation of carbon nanohorn assemblies and their potential for intracellular delivery,” Nanotechnology 18(19), 195103 (2007).
    [CrossRef]
  17. V. Krungleviciute, A. D. Migone, and M. Pepka, “Characterization of single-walled carbon nanohorns using neon adsorption isotherms,” Carbon 47(3), 769–774 (2009).
    [CrossRef]
  18. K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, “Pore structure of single-wall carbon nanohorn aggregates,” Chem. Phys. Lett. 331(1), 14–20 (2000).
    [CrossRef]
  19. M. Yudasaka, S. Iijima, and V. H. Crespi, “Single-wall carbon nanohorns and nanocones,” Topics. Appl. Phys. 111, 605–629 (2008) Vol 11.
    [CrossRef]
  20. J. L. Delgado, M. A. Herranz, and N. Martin, “The nano-forms of carbon,” J. Mater. Chem. 18(13), 1417–1426 (2008).
    [CrossRef]
  21. G. Pagona, A. S. D. Sandanayaka, Y. Araki, J. Fan, N. Tagmatarchis, M. Yudasaka, S. Iijima, and O. Ito, “Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles,” J. Phys. Chem. B 110(42), 20729–20732 (2006).
    [CrossRef]
  22. R. M. Lynch, B. H. Voy, D. F. Glass, S. M. Mahurin, B. Zhao, H. Hu, A. M. Saxton, R. L. Donnell, and M.- Cheng, “Assessing the pulmonary toxicity of single-walled carbon nanohorns,” Nanotoxicology 1(2), 157–166 (2007).
    [CrossRef]
  23. S. Battiston, M. Bolzan, S. Fiameni, R. Gerbasi, M. Meneghetti, E. Miorin, C. Mortalò, and C. Pagura, “Single wall carbon nanohorns coated with anatase titanium oxide,” Carbon 47(5), 1321–1326 (2009).
    [CrossRef]
  24. M. Khayet and J. M. Ortiz de Zarate, “Application of the multi-current transient hot-wire technique for absolute measurements of the thermal conductivity of glycols,” Int. J. Thermophysics 26(3), 637–646 (2005).
    [CrossRef]
  25. S. Krishnamurthy, P. Bhattacharya, P. E. Phelan, and R. S. Prasher, “Enhanced mass transport in nanofluids,” Nano Lett. 6(3), 419–423 (2006).
    [CrossRef]
  26. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 1983).
  27. CIE Technical Report no. 85 “Solar Spectral Irradiance” (1989).

2009 (3)

T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83(7), 969–977 (2009).
[CrossRef]

V. Krungleviciute, A. D. Migone, and M. Pepka, “Characterization of single-walled carbon nanohorns using neon adsorption isotherms,” Carbon 47(3), 769–774 (2009).
[CrossRef]

S. Battiston, M. Bolzan, S. Fiameni, R. Gerbasi, M. Meneghetti, E. Miorin, C. Mortalò, and C. Pagura, “Single wall carbon nanohorns coated with anatase titanium oxide,” Carbon 47(5), 1321–1326 (2009).
[CrossRef]

2008 (3)

M. Yudasaka, S. Iijima, and V. H. Crespi, “Single-wall carbon nanohorns and nanocones,” Topics. Appl. Phys. 111, 605–629 (2008) Vol 11.
[CrossRef]

J. L. Delgado, M. A. Herranz, and N. Martin, “The nano-forms of carbon,” J. Mater. Chem. 18(13), 1417–1426 (2008).
[CrossRef]

W. Wu, D. M. France, J. L. Routbort, and S. Choi, “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements,” Heat Transfer Eng. 29(5), 432–460 (2008).
[CrossRef]

2007 (2)

X. Fan, J. Tan, G. Zhang, and F. Zhang, “Isolation of carbon nanohorn assemblies and their potential for intracellular delivery,” Nanotechnology 18(19), 195103 (2007).
[CrossRef]

R. M. Lynch, B. H. Voy, D. F. Glass, S. M. Mahurin, B. Zhao, H. Hu, A. M. Saxton, R. L. Donnell, and M.- Cheng, “Assessing the pulmonary toxicity of single-walled carbon nanohorns,” Nanotoxicology 1(2), 157–166 (2007).
[CrossRef]

2006 (2)

G. Pagona, A. S. D. Sandanayaka, Y. Araki, J. Fan, N. Tagmatarchis, M. Yudasaka, S. Iijima, and O. Ito, “Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles,” J. Phys. Chem. B 110(42), 20729–20732 (2006).
[CrossRef]

S. Krishnamurthy, P. Bhattacharya, P. E. Phelan, and R. S. Prasher, “Enhanced mass transport in nanofluids,” Nano Lett. 6(3), 419–423 (2006).
[CrossRef]

2005 (1)

M. Khayet and J. M. Ortiz de Zarate, “Application of the multi-current transient hot-wire technique for absolute measurements of the thermal conductivity of glycols,” Int. J. Thermophysics 26(3), 637–646 (2005).
[CrossRef]

2004 (3)

R. Bertocchi, A. Kribus, and J. Karni, “Experimentally determined optical properties of a polydisperse carbon black cloud for a solar particle receiver,” J. Sol. Energy. Eng. 126(3), 833–841 (2004).
[CrossRef]

R. Bertocchi, J. Karni, and A. Kribus, “Experimental evaluation of a non-isothermal high temperature solar particle receiver,” Energy 29(5-6), 687–700 (2004).
[CrossRef]

M. J. Assael, C.-F. Chen, I. Metaxa, and W. A. Wakeham, Thermal Conductivity of Suspensions of Carbon Nanotubes in Water,” Int. J. Thermophys. 25(4), 971–985 (2004).
[CrossRef]

2001 (3)

J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett. 78(6), 718–720 (2001).
[CrossRef]

P. Kim, L. Shi, A. Majumdar, and P. L. McEuen “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Phys. Rev. Lett . 87, 215502-1-215502-4 (2001).

S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett. 79(14), 2252–2254 (2001).
[CrossRef]

2000 (2)

K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, “Pore structure of single-wall carbon nanohorn aggregates,” Chem. Phys. Lett. 331(1), 14–20 (2000).
[CrossRef]

S. Berber, Y. K. Kwon, and D. Tomànek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000).
[CrossRef]

1999 (2)

S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, “Nano-aggregates of single-walled graphitic carbon nano-horns,” Chem. Phys. Lett. 309(3-4), 165–170 (1999).
[CrossRef]

J. Hone, M. Whitney, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes,” Synth. Met. 103(1-3), 2498–2499 (1999).
[CrossRef]

Araki, Y.

G. Pagona, A. S. D. Sandanayaka, Y. Araki, J. Fan, N. Tagmatarchis, M. Yudasaka, S. Iijima, and O. Ito, “Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles,” J. Phys. Chem. B 110(42), 20729–20732 (2006).
[CrossRef]

Assael, M. J.

M. J. Assael, C.-F. Chen, I. Metaxa, and W. A. Wakeham, Thermal Conductivity of Suspensions of Carbon Nanotubes in Water,” Int. J. Thermophys. 25(4), 971–985 (2004).
[CrossRef]

Bandow, S.

S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, “Nano-aggregates of single-walled graphitic carbon nano-horns,” Chem. Phys. Lett. 309(3-4), 165–170 (1999).
[CrossRef]

Battiston, S.

S. Battiston, M. Bolzan, S. Fiameni, R. Gerbasi, M. Meneghetti, E. Miorin, C. Mortalò, and C. Pagura, “Single wall carbon nanohorns coated with anatase titanium oxide,” Carbon 47(5), 1321–1326 (2009).
[CrossRef]

Berber, S.

S. Berber, Y. K. Kwon, and D. Tomànek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000).
[CrossRef]

Bertocchi, R.

R. Bertocchi, J. Karni, and A. Kribus, “Experimental evaluation of a non-isothermal high temperature solar particle receiver,” Energy 29(5-6), 687–700 (2004).
[CrossRef]

R. Bertocchi, A. Kribus, and J. Karni, “Experimentally determined optical properties of a polydisperse carbon black cloud for a solar particle receiver,” J. Sol. Energy. Eng. 126(3), 833–841 (2004).
[CrossRef]

Bhattacharya, P.

S. Krishnamurthy, P. Bhattacharya, P. E. Phelan, and R. S. Prasher, “Enhanced mass transport in nanofluids,” Nano Lett. 6(3), 419–423 (2006).
[CrossRef]

Bolzan, M.

S. Battiston, M. Bolzan, S. Fiameni, R. Gerbasi, M. Meneghetti, E. Miorin, C. Mortalò, and C. Pagura, “Single wall carbon nanohorns coated with anatase titanium oxide,” Carbon 47(5), 1321–1326 (2009).
[CrossRef]

Chen, C.-F.

M. J. Assael, C.-F. Chen, I. Metaxa, and W. A. Wakeham, Thermal Conductivity of Suspensions of Carbon Nanotubes in Water,” Int. J. Thermophys. 25(4), 971–985 (2004).
[CrossRef]

Cheng, M.-

R. M. Lynch, B. H. Voy, D. F. Glass, S. M. Mahurin, B. Zhao, H. Hu, A. M. Saxton, R. L. Donnell, and M.- Cheng, “Assessing the pulmonary toxicity of single-walled carbon nanohorns,” Nanotoxicology 1(2), 157–166 (2007).
[CrossRef]

Choi, S.

W. Wu, D. M. France, J. L. Routbort, and S. Choi, “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements,” Heat Transfer Eng. 29(5), 432–460 (2008).
[CrossRef]

Choi, S. U. S.

S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett. 79(14), 2252–2254 (2001).
[CrossRef]

J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett. 78(6), 718–720 (2001).
[CrossRef]

Crespi, V. H.

M. Yudasaka, S. Iijima, and V. H. Crespi, “Single-wall carbon nanohorns and nanocones,” Topics. Appl. Phys. 111, 605–629 (2008) Vol 11.
[CrossRef]

Delgado, J. L.

J. L. Delgado, M. A. Herranz, and N. Martin, “The nano-forms of carbon,” J. Mater. Chem. 18(13), 1417–1426 (2008).
[CrossRef]

Donnell, R. L.

R. M. Lynch, B. H. Voy, D. F. Glass, S. M. Mahurin, B. Zhao, H. Hu, A. M. Saxton, R. L. Donnell, and M.- Cheng, “Assessing the pulmonary toxicity of single-walled carbon nanohorns,” Nanotoxicology 1(2), 157–166 (2007).
[CrossRef]

Eastman, J. A.

J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett. 78(6), 718–720 (2001).
[CrossRef]

Fan, J.

G. Pagona, A. S. D. Sandanayaka, Y. Araki, J. Fan, N. Tagmatarchis, M. Yudasaka, S. Iijima, and O. Ito, “Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles,” J. Phys. Chem. B 110(42), 20729–20732 (2006).
[CrossRef]

Fan, X.

X. Fan, J. Tan, G. Zhang, and F. Zhang, “Isolation of carbon nanohorn assemblies and their potential for intracellular delivery,” Nanotechnology 18(19), 195103 (2007).
[CrossRef]

Fiameni, S.

S. Battiston, M. Bolzan, S. Fiameni, R. Gerbasi, M. Meneghetti, E. Miorin, C. Mortalò, and C. Pagura, “Single wall carbon nanohorns coated with anatase titanium oxide,” Carbon 47(5), 1321–1326 (2009).
[CrossRef]

France, D. M.

W. Wu, D. M. France, J. L. Routbort, and S. Choi, “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements,” Heat Transfer Eng. 29(5), 432–460 (2008).
[CrossRef]

Gerbasi, R.

S. Battiston, M. Bolzan, S. Fiameni, R. Gerbasi, M. Meneghetti, E. Miorin, C. Mortalò, and C. Pagura, “Single wall carbon nanohorns coated with anatase titanium oxide,” Carbon 47(5), 1321–1326 (2009).
[CrossRef]

Glass, D. F.

R. M. Lynch, B. H. Voy, D. F. Glass, S. M. Mahurin, B. Zhao, H. Hu, A. M. Saxton, R. L. Donnell, and M.- Cheng, “Assessing the pulmonary toxicity of single-walled carbon nanohorns,” Nanotoxicology 1(2), 157–166 (2007).
[CrossRef]

Golden, J. S.

T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83(7), 969–977 (2009).
[CrossRef]

Grulke, E. A.

S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett. 79(14), 2252–2254 (2001).
[CrossRef]

Herranz, M. A.

J. L. Delgado, M. A. Herranz, and N. Martin, “The nano-forms of carbon,” J. Mater. Chem. 18(13), 1417–1426 (2008).
[CrossRef]

Hone, J.

J. Hone, M. Whitney, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes,” Synth. Met. 103(1-3), 2498–2499 (1999).
[CrossRef]

Hu, H.

R. M. Lynch, B. H. Voy, D. F. Glass, S. M. Mahurin, B. Zhao, H. Hu, A. M. Saxton, R. L. Donnell, and M.- Cheng, “Assessing the pulmonary toxicity of single-walled carbon nanohorns,” Nanotoxicology 1(2), 157–166 (2007).
[CrossRef]

Iijima, S.

M. Yudasaka, S. Iijima, and V. H. Crespi, “Single-wall carbon nanohorns and nanocones,” Topics. Appl. Phys. 111, 605–629 (2008) Vol 11.
[CrossRef]

G. Pagona, A. S. D. Sandanayaka, Y. Araki, J. Fan, N. Tagmatarchis, M. Yudasaka, S. Iijima, and O. Ito, “Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles,” J. Phys. Chem. B 110(42), 20729–20732 (2006).
[CrossRef]

K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, “Pore structure of single-wall carbon nanohorn aggregates,” Chem. Phys. Lett. 331(1), 14–20 (2000).
[CrossRef]

S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, “Nano-aggregates of single-walled graphitic carbon nano-horns,” Chem. Phys. Lett. 309(3-4), 165–170 (1999).
[CrossRef]

Ito, O.

G. Pagona, A. S. D. Sandanayaka, Y. Araki, J. Fan, N. Tagmatarchis, M. Yudasaka, S. Iijima, and O. Ito, “Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles,” J. Phys. Chem. B 110(42), 20729–20732 (2006).
[CrossRef]

Kaneko, K.

K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, “Pore structure of single-wall carbon nanohorn aggregates,” Chem. Phys. Lett. 331(1), 14–20 (2000).
[CrossRef]

Karni, J.

R. Bertocchi, J. Karni, and A. Kribus, “Experimental evaluation of a non-isothermal high temperature solar particle receiver,” Energy 29(5-6), 687–700 (2004).
[CrossRef]

R. Bertocchi, A. Kribus, and J. Karni, “Experimentally determined optical properties of a polydisperse carbon black cloud for a solar particle receiver,” J. Sol. Energy. Eng. 126(3), 833–841 (2004).
[CrossRef]

Khayet, M.

M. Khayet and J. M. Ortiz de Zarate, “Application of the multi-current transient hot-wire technique for absolute measurements of the thermal conductivity of glycols,” Int. J. Thermophysics 26(3), 637–646 (2005).
[CrossRef]

Khlebtsov, N. G.

N. G. Khlebtsov, L. A. Trachuk, and A. G. Mel’nikov, “The Effect of the Size, Shape, and Structure of Metal Nanoparticles on the Dependence of Their Optical Properties on the Refractive Index of a Disperse Medium,” Opt. Spectrosc . 98,77-83 (2005).

Kim, P.

P. Kim, L. Shi, A. Majumdar, and P. L. McEuen “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Phys. Rev. Lett . 87, 215502-1-215502-4 (2001).

Kokai, F.

K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, “Pore structure of single-wall carbon nanohorn aggregates,” Chem. Phys. Lett. 331(1), 14–20 (2000).
[CrossRef]

S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, “Nano-aggregates of single-walled graphitic carbon nano-horns,” Chem. Phys. Lett. 309(3-4), 165–170 (1999).
[CrossRef]

Kribus, A.

R. Bertocchi, A. Kribus, and J. Karni, “Experimentally determined optical properties of a polydisperse carbon black cloud for a solar particle receiver,” J. Sol. Energy. Eng. 126(3), 833–841 (2004).
[CrossRef]

R. Bertocchi, J. Karni, and A. Kribus, “Experimental evaluation of a non-isothermal high temperature solar particle receiver,” Energy 29(5-6), 687–700 (2004).
[CrossRef]

Krishnamurthy, S.

S. Krishnamurthy, P. Bhattacharya, P. E. Phelan, and R. S. Prasher, “Enhanced mass transport in nanofluids,” Nano Lett. 6(3), 419–423 (2006).
[CrossRef]

Krungleviciute, V.

V. Krungleviciute, A. D. Migone, and M. Pepka, “Characterization of single-walled carbon nanohorns using neon adsorption isotherms,” Carbon 47(3), 769–774 (2009).
[CrossRef]

Kwon, Y. K.

S. Berber, Y. K. Kwon, and D. Tomànek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000).
[CrossRef]

Li, S.

J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett. 78(6), 718–720 (2001).
[CrossRef]

Lockwood, F. E.

S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett. 79(14), 2252–2254 (2001).
[CrossRef]

Lynch, R. M.

R. M. Lynch, B. H. Voy, D. F. Glass, S. M. Mahurin, B. Zhao, H. Hu, A. M. Saxton, R. L. Donnell, and M.- Cheng, “Assessing the pulmonary toxicity of single-walled carbon nanohorns,” Nanotoxicology 1(2), 157–166 (2007).
[CrossRef]

Mahurin, S. M.

R. M. Lynch, B. H. Voy, D. F. Glass, S. M. Mahurin, B. Zhao, H. Hu, A. M. Saxton, R. L. Donnell, and M.- Cheng, “Assessing the pulmonary toxicity of single-walled carbon nanohorns,” Nanotoxicology 1(2), 157–166 (2007).
[CrossRef]

Majumdar, A.

P. Kim, L. Shi, A. Majumdar, and P. L. McEuen “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Phys. Rev. Lett . 87, 215502-1-215502-4 (2001).

Martin, N.

J. L. Delgado, M. A. Herranz, and N. Martin, “The nano-forms of carbon,” J. Mater. Chem. 18(13), 1417–1426 (2008).
[CrossRef]

McEuen, P. L.

P. Kim, L. Shi, A. Majumdar, and P. L. McEuen “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Phys. Rev. Lett . 87, 215502-1-215502-4 (2001).

Mel’nikov, A. G.

N. G. Khlebtsov, L. A. Trachuk, and A. G. Mel’nikov, “The Effect of the Size, Shape, and Structure of Metal Nanoparticles on the Dependence of Their Optical Properties on the Refractive Index of a Disperse Medium,” Opt. Spectrosc . 98,77-83 (2005).

Meneghetti, M.

S. Battiston, M. Bolzan, S. Fiameni, R. Gerbasi, M. Meneghetti, E. Miorin, C. Mortalò, and C. Pagura, “Single wall carbon nanohorns coated with anatase titanium oxide,” Carbon 47(5), 1321–1326 (2009).
[CrossRef]

Metaxa, I.

M. J. Assael, C.-F. Chen, I. Metaxa, and W. A. Wakeham, Thermal Conductivity of Suspensions of Carbon Nanotubes in Water,” Int. J. Thermophys. 25(4), 971–985 (2004).
[CrossRef]

Migone, A. D.

V. Krungleviciute, A. D. Migone, and M. Pepka, “Characterization of single-walled carbon nanohorns using neon adsorption isotherms,” Carbon 47(3), 769–774 (2009).
[CrossRef]

Miorin, E.

S. Battiston, M. Bolzan, S. Fiameni, R. Gerbasi, M. Meneghetti, E. Miorin, C. Mortalò, and C. Pagura, “Single wall carbon nanohorns coated with anatase titanium oxide,” Carbon 47(5), 1321–1326 (2009).
[CrossRef]

Mortalò, C.

S. Battiston, M. Bolzan, S. Fiameni, R. Gerbasi, M. Meneghetti, E. Miorin, C. Mortalò, and C. Pagura, “Single wall carbon nanohorns coated with anatase titanium oxide,” Carbon 47(5), 1321–1326 (2009).
[CrossRef]

Murata, K.

K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, “Pore structure of single-wall carbon nanohorn aggregates,” Chem. Phys. Lett. 331(1), 14–20 (2000).
[CrossRef]

Natarajan, E.

E. Natarajan and R. Sathish, “Role of nanofluids in solar water heater,” Int. J. Adv. Manuf. Technol. , doi:, http://www.springerlink.com/content/9076620323870634/?p=2e88fcc3359c49d39a4b5dc896d051b4&pi=0 .
[CrossRef]

Ortiz de Zarate, J. M.

M. Khayet and J. M. Ortiz de Zarate, “Application of the multi-current transient hot-wire technique for absolute measurements of the thermal conductivity of glycols,” Int. J. Thermophysics 26(3), 637–646 (2005).
[CrossRef]

Otanicar, T. P.

T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83(7), 969–977 (2009).
[CrossRef]

Pagona, G.

G. Pagona, A. S. D. Sandanayaka, Y. Araki, J. Fan, N. Tagmatarchis, M. Yudasaka, S. Iijima, and O. Ito, “Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles,” J. Phys. Chem. B 110(42), 20729–20732 (2006).
[CrossRef]

Pagura, C.

S. Battiston, M. Bolzan, S. Fiameni, R. Gerbasi, M. Meneghetti, E. Miorin, C. Mortalò, and C. Pagura, “Single wall carbon nanohorns coated with anatase titanium oxide,” Carbon 47(5), 1321–1326 (2009).
[CrossRef]

Pepka, M.

V. Krungleviciute, A. D. Migone, and M. Pepka, “Characterization of single-walled carbon nanohorns using neon adsorption isotherms,” Carbon 47(3), 769–774 (2009).
[CrossRef]

Phelan, P. E.

T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83(7), 969–977 (2009).
[CrossRef]

S. Krishnamurthy, P. Bhattacharya, P. E. Phelan, and R. S. Prasher, “Enhanced mass transport in nanofluids,” Nano Lett. 6(3), 419–423 (2006).
[CrossRef]

Prasher, R. S.

S. Krishnamurthy, P. Bhattacharya, P. E. Phelan, and R. S. Prasher, “Enhanced mass transport in nanofluids,” Nano Lett. 6(3), 419–423 (2006).
[CrossRef]

Routbort, J. L.

W. Wu, D. M. France, J. L. Routbort, and S. Choi, “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements,” Heat Transfer Eng. 29(5), 432–460 (2008).
[CrossRef]

Sandanayaka, A. S. D.

G. Pagona, A. S. D. Sandanayaka, Y. Araki, J. Fan, N. Tagmatarchis, M. Yudasaka, S. Iijima, and O. Ito, “Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles,” J. Phys. Chem. B 110(42), 20729–20732 (2006).
[CrossRef]

Sathish, R.

E. Natarajan and R. Sathish, “Role of nanofluids in solar water heater,” Int. J. Adv. Manuf. Technol. , doi:, http://www.springerlink.com/content/9076620323870634/?p=2e88fcc3359c49d39a4b5dc896d051b4&pi=0 .
[CrossRef]

Saxton, A. M.

R. M. Lynch, B. H. Voy, D. F. Glass, S. M. Mahurin, B. Zhao, H. Hu, A. M. Saxton, R. L. Donnell, and M.- Cheng, “Assessing the pulmonary toxicity of single-walled carbon nanohorns,” Nanotoxicology 1(2), 157–166 (2007).
[CrossRef]

Shi, L.

P. Kim, L. Shi, A. Majumdar, and P. L. McEuen “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Phys. Rev. Lett . 87, 215502-1-215502-4 (2001).

Suenaga, K.

S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, “Nano-aggregates of single-walled graphitic carbon nano-horns,” Chem. Phys. Lett. 309(3-4), 165–170 (1999).
[CrossRef]

Tagmatarchis, N.

G. Pagona, A. S. D. Sandanayaka, Y. Araki, J. Fan, N. Tagmatarchis, M. Yudasaka, S. Iijima, and O. Ito, “Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles,” J. Phys. Chem. B 110(42), 20729–20732 (2006).
[CrossRef]

Takahashi, K.

K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, “Pore structure of single-wall carbon nanohorn aggregates,” Chem. Phys. Lett. 331(1), 14–20 (2000).
[CrossRef]

S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, “Nano-aggregates of single-walled graphitic carbon nano-horns,” Chem. Phys. Lett. 309(3-4), 165–170 (1999).
[CrossRef]

Tan, J.

X. Fan, J. Tan, G. Zhang, and F. Zhang, “Isolation of carbon nanohorn assemblies and their potential for intracellular delivery,” Nanotechnology 18(19), 195103 (2007).
[CrossRef]

Thompson, L. J.

J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett. 78(6), 718–720 (2001).
[CrossRef]

Tomànek, D.

S. Berber, Y. K. Kwon, and D. Tomànek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000).
[CrossRef]

Trachuk, L. A.

N. G. Khlebtsov, L. A. Trachuk, and A. G. Mel’nikov, “The Effect of the Size, Shape, and Structure of Metal Nanoparticles on the Dependence of Their Optical Properties on the Refractive Index of a Disperse Medium,” Opt. Spectrosc . 98,77-83 (2005).

Voy, B. H.

R. M. Lynch, B. H. Voy, D. F. Glass, S. M. Mahurin, B. Zhao, H. Hu, A. M. Saxton, R. L. Donnell, and M.- Cheng, “Assessing the pulmonary toxicity of single-walled carbon nanohorns,” Nanotoxicology 1(2), 157–166 (2007).
[CrossRef]

Wakeham, W. A.

M. J. Assael, C.-F. Chen, I. Metaxa, and W. A. Wakeham, Thermal Conductivity of Suspensions of Carbon Nanotubes in Water,” Int. J. Thermophys. 25(4), 971–985 (2004).
[CrossRef]

Whitney, M.

J. Hone, M. Whitney, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes,” Synth. Met. 103(1-3), 2498–2499 (1999).
[CrossRef]

Wu, W.

W. Wu, D. M. France, J. L. Routbort, and S. Choi, “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements,” Heat Transfer Eng. 29(5), 432–460 (2008).
[CrossRef]

Yamada, R.

S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, “Nano-aggregates of single-walled graphitic carbon nano-horns,” Chem. Phys. Lett. 309(3-4), 165–170 (1999).
[CrossRef]

Yu, W.

S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett. 79(14), 2252–2254 (2001).
[CrossRef]

J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett. 78(6), 718–720 (2001).
[CrossRef]

Yudasaka, M.

M. Yudasaka, S. Iijima, and V. H. Crespi, “Single-wall carbon nanohorns and nanocones,” Topics. Appl. Phys. 111, 605–629 (2008) Vol 11.
[CrossRef]

G. Pagona, A. S. D. Sandanayaka, Y. Araki, J. Fan, N. Tagmatarchis, M. Yudasaka, S. Iijima, and O. Ito, “Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles,” J. Phys. Chem. B 110(42), 20729–20732 (2006).
[CrossRef]

K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, “Pore structure of single-wall carbon nanohorn aggregates,” Chem. Phys. Lett. 331(1), 14–20 (2000).
[CrossRef]

S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, “Nano-aggregates of single-walled graphitic carbon nano-horns,” Chem. Phys. Lett. 309(3-4), 165–170 (1999).
[CrossRef]

Zettl, A.

J. Hone, M. Whitney, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes,” Synth. Met. 103(1-3), 2498–2499 (1999).
[CrossRef]

Zhang, F.

X. Fan, J. Tan, G. Zhang, and F. Zhang, “Isolation of carbon nanohorn assemblies and their potential for intracellular delivery,” Nanotechnology 18(19), 195103 (2007).
[CrossRef]

Zhang, G.

X. Fan, J. Tan, G. Zhang, and F. Zhang, “Isolation of carbon nanohorn assemblies and their potential for intracellular delivery,” Nanotechnology 18(19), 195103 (2007).
[CrossRef]

Zhang, Z. G.

S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett. 79(14), 2252–2254 (2001).
[CrossRef]

Zhao, B.

R. M. Lynch, B. H. Voy, D. F. Glass, S. M. Mahurin, B. Zhao, H. Hu, A. M. Saxton, R. L. Donnell, and M.- Cheng, “Assessing the pulmonary toxicity of single-walled carbon nanohorns,” Nanotoxicology 1(2), 157–166 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett. 78(6), 718–720 (2001).
[CrossRef]

S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett. 79(14), 2252–2254 (2001).
[CrossRef]

Carbon (2)

V. Krungleviciute, A. D. Migone, and M. Pepka, “Characterization of single-walled carbon nanohorns using neon adsorption isotherms,” Carbon 47(3), 769–774 (2009).
[CrossRef]

S. Battiston, M. Bolzan, S. Fiameni, R. Gerbasi, M. Meneghetti, E. Miorin, C. Mortalò, and C. Pagura, “Single wall carbon nanohorns coated with anatase titanium oxide,” Carbon 47(5), 1321–1326 (2009).
[CrossRef]

Chem. Phys. Lett. (2)

K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, “Pore structure of single-wall carbon nanohorn aggregates,” Chem. Phys. Lett. 331(1), 14–20 (2000).
[CrossRef]

S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, “Nano-aggregates of single-walled graphitic carbon nano-horns,” Chem. Phys. Lett. 309(3-4), 165–170 (1999).
[CrossRef]

Energy (1)

R. Bertocchi, J. Karni, and A. Kribus, “Experimental evaluation of a non-isothermal high temperature solar particle receiver,” Energy 29(5-6), 687–700 (2004).
[CrossRef]

Heat Transfer Eng. (1)

W. Wu, D. M. France, J. L. Routbort, and S. Choi, “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements,” Heat Transfer Eng. 29(5), 432–460 (2008).
[CrossRef]

Int. J. Adv. Manuf. Technol. (1)

E. Natarajan and R. Sathish, “Role of nanofluids in solar water heater,” Int. J. Adv. Manuf. Technol. , doi:, http://www.springerlink.com/content/9076620323870634/?p=2e88fcc3359c49d39a4b5dc896d051b4&pi=0 .
[CrossRef]

Int. J. Thermophys. (1)

M. J. Assael, C.-F. Chen, I. Metaxa, and W. A. Wakeham, Thermal Conductivity of Suspensions of Carbon Nanotubes in Water,” Int. J. Thermophys. 25(4), 971–985 (2004).
[CrossRef]

Int. J. Thermophysics (1)

M. Khayet and J. M. Ortiz de Zarate, “Application of the multi-current transient hot-wire technique for absolute measurements of the thermal conductivity of glycols,” Int. J. Thermophysics 26(3), 637–646 (2005).
[CrossRef]

J. Mater. Chem. (1)

J. L. Delgado, M. A. Herranz, and N. Martin, “The nano-forms of carbon,” J. Mater. Chem. 18(13), 1417–1426 (2008).
[CrossRef]

J. Phys. Chem. B (1)

G. Pagona, A. S. D. Sandanayaka, Y. Araki, J. Fan, N. Tagmatarchis, M. Yudasaka, S. Iijima, and O. Ito, “Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles,” J. Phys. Chem. B 110(42), 20729–20732 (2006).
[CrossRef]

J. Sol. Energy. Eng. (1)

R. Bertocchi, A. Kribus, and J. Karni, “Experimentally determined optical properties of a polydisperse carbon black cloud for a solar particle receiver,” J. Sol. Energy. Eng. 126(3), 833–841 (2004).
[CrossRef]

Nano Lett. (1)

S. Krishnamurthy, P. Bhattacharya, P. E. Phelan, and R. S. Prasher, “Enhanced mass transport in nanofluids,” Nano Lett. 6(3), 419–423 (2006).
[CrossRef]

Nanotechnology (1)

X. Fan, J. Tan, G. Zhang, and F. Zhang, “Isolation of carbon nanohorn assemblies and their potential for intracellular delivery,” Nanotechnology 18(19), 195103 (2007).
[CrossRef]

Nanotoxicology (1)

R. M. Lynch, B. H. Voy, D. F. Glass, S. M. Mahurin, B. Zhao, H. Hu, A. M. Saxton, R. L. Donnell, and M.- Cheng, “Assessing the pulmonary toxicity of single-walled carbon nanohorns,” Nanotoxicology 1(2), 157–166 (2007).
[CrossRef]

Phys. Rev. Lett (1)

P. Kim, L. Shi, A. Majumdar, and P. L. McEuen “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Phys. Rev. Lett . 87, 215502-1-215502-4 (2001).

Phys. Rev. Lett. (1)

S. Berber, Y. K. Kwon, and D. Tomànek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000).
[CrossRef]

Sol. Energy (1)

T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83(7), 969–977 (2009).
[CrossRef]

Synth. Met. (1)

J. Hone, M. Whitney, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes,” Synth. Met. 103(1-3), 2498–2499 (1999).
[CrossRef]

Topics. Appl. Phys. (1)

M. Yudasaka, S. Iijima, and V. H. Crespi, “Single-wall carbon nanohorns and nanocones,” Topics. Appl. Phys. 111, 605–629 (2008) Vol 11.
[CrossRef]

Other (5)

N. G. Khlebtsov, L. A. Trachuk, and A. G. Mel’nikov, “The Effect of the Size, Shape, and Structure of Metal Nanoparticles on the Dependence of Their Optical Properties on the Refractive Index of a Disperse Medium,” Opt. Spectrosc . 98,77-83 (2005).

H. Yuncu, E. Paykoc, and Y. Yener, Solar energy utilization (Kluwer Academic Publishers, 1987).

H. Tyagi, P. Phelan, R. Prasher “Predicted efficiency of a nanofluid-based direct absorption solar receiver,” Proceedings ES2007, Energy Sustainability 2007, June 27-30, 2007, Long Beach, California.

C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 1983).

CIE Technical Report no. 85 “Solar Spectral Irradiance” (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics