Abstract

Organic photovoltaic (OPV) cells suffer from low charge carrier mobilities of polymers, which renders it important to achieve complete optical absorption in active layers thinner than optical absorption length. Active layers conformally deposited on light-trapping, microscale textured, grating-type surfaces is one possible approach to achieve this objective. In this report, we analyze the design of such grating-type OPV cells using finite element method simulations. The energy dissipation of electromagnetic field in the active layer is studied as a function of active layer thickness, and pitch and height of the underlying textures. The superiority of textured geometry in terms of light trapping is clearly demonstrated by the simulation results. We observe 40% increase in photonic absorption in 150 nm thick active layer, for textures with 2 μm pitch and 1.5 μm height.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48(2), 183–185 (1986).
    [CrossRef]
  2. P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003).
    [CrossRef]
  3. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62(6), 585–587 (1993).
    [CrossRef]
  4. G. Yu and A. J. Heeger, “Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions,” J. Appl. Phys. 78(7), 4510–4515 (1995).
    [CrossRef]
  5. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature 376(6540), 498–500 (1995).
    [CrossRef]
  6. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
    [CrossRef]
  7. W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
    [CrossRef]
  8. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
    [CrossRef]
  9. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
    [CrossRef]
  10. M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Express 16(8), 5385–5396 (2008).
    [CrossRef] [PubMed]
  11. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
    [CrossRef]
  12. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995).
    [CrossRef] [PubMed]
  13. L. Stolz Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12(3), 189–195 (2000).
    [CrossRef]
  14. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes - architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
    [CrossRef]
  15. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
    [CrossRef]
  16. F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils,” IEEE Electron Device Lett. 30(7), 727–729 (2009).
    [CrossRef]
  17. M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1-2), 298–300 (2005).
    [CrossRef]
  18. E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys. 102(8), 083104 (2007).
    [CrossRef]
  19. L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
    [CrossRef]
  20. J. Bartella, J. Schroeder, and K. Witting, “Characterization of ITO- and TiOxNy films by spectroscopic ellipsometry, spectraphotometry and XPS,” Appl. Surf. Sci. 179(1-4), 181–190 (2001).
    [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
    [CrossRef]
  22. D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100(11), 114509 (2006).
    [CrossRef]

2009 (1)

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils,” IEEE Electron Device Lett. 30(7), 727–729 (2009).
[CrossRef]

2008 (1)

2007 (1)

E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys. 102(8), 083104 (2007).
[CrossRef]

2006 (1)

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100(11), 114509 (2006).
[CrossRef]

2005 (3)

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1-2), 298–300 (2005).
[CrossRef]

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

2004 (1)

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes - architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

2003 (2)

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[CrossRef]

P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003).
[CrossRef]

2001 (1)

J. Bartella, J. Schroeder, and K. Witting, “Characterization of ITO- and TiOxNy films by spectroscopic ellipsometry, spectraphotometry and XPS,” Appl. Surf. Sci. 179(1-4), 181–190 (2001).
[CrossRef]

2000 (1)

L. Stolz Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12(3), 189–195 (2000).
[CrossRef]

1999 (1)

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[CrossRef]

1998 (1)

L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
[CrossRef]

1995 (4)

G. Yu and A. J. Heeger, “Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions,” J. Appl. Phys. 78(7), 4510–4515 (1995).
[CrossRef]

J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature 376(6540), 498–500 (1995).
[CrossRef]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995).
[CrossRef] [PubMed]

1993 (1)

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62(6), 585–587 (1993).
[CrossRef]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

1986 (1)

C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48(2), 183–185 (1986).
[CrossRef]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Agrawal, M.

Alexandrou, I.

E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys. 102(8), 083104 (2007).
[CrossRef]

Andersson, M. R.

L. Stolz Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12(3), 189–195 (2000).
[CrossRef]

Arwin, H.

L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
[CrossRef]

Bartella, J.

J. Bartella, J. Schroeder, and K. Witting, “Characterization of ITO- and TiOxNy films by spectroscopic ellipsometry, spectraphotometry and XPS,” Appl. Surf. Sci. 179(1-4), 181–190 (2001).
[CrossRef]

Braun, D.

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62(6), 585–587 (1993).
[CrossRef]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

Carlsson, F.

L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
[CrossRef]

Chen, F. C.

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils,” IEEE Electron Device Lett. 30(7), 727–729 (2009).
[CrossRef]

Chen, H. M. P.

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils,” IEEE Electron Device Lett. 30(7), 727–729 (2009).
[CrossRef]

Chen, W. C.

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils,” IEEE Electron Device Lett. 30(7), 727–729 (2009).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Emery, K.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Forrest, S.

P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003).
[CrossRef]

Fréchet, J. M. J.

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[CrossRef]

Friend, R. H.

J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature 376(6540), 498–500 (1995).
[CrossRef]

Gao, J.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

Glatthaar, M.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1-2), 298–300 (2005).
[CrossRef]

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes - architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Gombert, A.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes - architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Gong, X.

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Granlund, T.

L. Stolz Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12(3), 189–195 (2000).
[CrossRef]

Green, M. A.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

Greenham, N. C.

J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature 376(6540), 498–500 (1995).
[CrossRef]

Halls, J. J. M.

J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature 376(6540), 498–500 (1995).
[CrossRef]

Hayashi, Y.

E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys. 102(8), 083104 (2007).
[CrossRef]

Heeger, A. J.

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

G. Yu and A. J. Heeger, “Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions,” J. Appl. Phys. 78(7), 4510–4515 (1995).
[CrossRef]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62(6), 585–587 (1993).
[CrossRef]

Heine, C.

Hinsch, A.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1-2), 298–300 (2005).
[CrossRef]

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes - architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Holmes, A. B.

J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature 376(6540), 498–500 (1995).
[CrossRef]

Huang, J.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Huang, W. C.

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils,” IEEE Electron Device Lett. 30(7), 727–729 (2009).
[CrossRef]

Hummelen, J. C.

L. Stolz Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12(3), 189–195 (2000).
[CrossRef]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

Inganäs, O.

L. Stolz Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12(3), 189–195 (2000).
[CrossRef]

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[CrossRef]

L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Kadnikova, E. N.

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[CrossRef]

Kline, R. J.

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[CrossRef]

Lee, C. L.

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils,” IEEE Electron Device Lett. 30(7), 727–729 (2009).
[CrossRef]

Lee, K.

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Lewer, P.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1-2), 298–300 (2005).
[CrossRef]

Li, G.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Lioudakis, E.

E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys. 102(8), 083104 (2007).
[CrossRef]

Liu, J.

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[CrossRef]

Luther, J.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1-2), 298–300 (2005).
[CrossRef]

Ma, W. L.

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Marseglia, E. A.

J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature 376(6540), 498–500 (1995).
[CrossRef]

McGehee, M. D.

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[CrossRef]

Moratti, S. C.

J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature 376(6540), 498–500 (1995).
[CrossRef]

Morf, R. H.

Moriarty, T.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Niggemann, M.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1-2), 298–300 (2005).
[CrossRef]

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes - architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Nyberg, T.

L. Stolz Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12(3), 189–195 (2000).
[CrossRef]

Othonos, A.

E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys. 102(8), 083104 (2007).
[CrossRef]

Pettersson, L. A. A.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[CrossRef]

L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
[CrossRef]

Peumans, P.

M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Express 16(8), 5385–5396 (2008).
[CrossRef] [PubMed]

P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003).
[CrossRef]

Riede, M.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1-2), 298–300 (2005).
[CrossRef]

Roman, L. S.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[CrossRef]

Sariciftci, N. S.

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62(6), 585–587 (1993).
[CrossRef]

Schroeder, J.

J. Bartella, J. Schroeder, and K. Witting, “Characterization of ITO- and TiOxNy films by spectroscopic ellipsometry, spectraphotometry and XPS,” Appl. Surf. Sci. 179(1-4), 181–190 (2001).
[CrossRef]

Shrotriya, V.

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100(11), 114509 (2006).
[CrossRef]

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Sievers, D. W.

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100(11), 114509 (2006).
[CrossRef]

Srdanov, V. I.

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62(6), 585–587 (1993).
[CrossRef]

Stolz Roman, L.

L. Stolz Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12(3), 189–195 (2000).
[CrossRef]

Stucky, G.

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62(6), 585–587 (1993).
[CrossRef]

Svensson, M.

L. Stolz Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12(3), 189–195 (2000).
[CrossRef]

Tang, C. W.

C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48(2), 183–185 (1986).
[CrossRef]

Walsh, C. A.

J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature 376(6540), 498–500 (1995).
[CrossRef]

Witting, K.

J. Bartella, J. Schroeder, and K. Witting, “Characterization of ITO- and TiOxNy films by spectroscopic ellipsometry, spectraphotometry and XPS,” Appl. Surf. Sci. 179(1-4), 181–190 (2001).
[CrossRef]

Wittwer, V.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes - architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Wu, J. L.

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils,” IEEE Electron Device Lett. 30(7), 727–729 (2009).
[CrossRef]

Wudl, F.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62(6), 585–587 (1993).
[CrossRef]

Yakimov, A.

P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003).
[CrossRef]

Yang, C. Y.

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Yang, Y.

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100(11), 114509 (2006).
[CrossRef]

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Yao, Y.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Yu, G.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

G. Yu and A. J. Heeger, “Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions,” J. Appl. Phys. 78(7), 4510–4515 (1995).
[CrossRef]

Zhang, C.

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62(6), 585–587 (1993).
[CrossRef]

Zimmermann, B.

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1-2), 298–300 (2005).
[CrossRef]

Adv. Funct. Mater. (1)

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Adv. Mater. (2)

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[CrossRef]

L. Stolz Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12(3), 189–195 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48(2), 183–185 (1986).
[CrossRef]

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62(6), 585–587 (1993).
[CrossRef]

Appl. Surf. Sci. (1)

J. Bartella, J. Schroeder, and K. Witting, “Characterization of ITO- and TiOxNy films by spectroscopic ellipsometry, spectraphotometry and XPS,” Appl. Surf. Sci. 179(1-4), 181–190 (2001).
[CrossRef]

IEEE Electron Device Lett. (1)

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils,” IEEE Electron Device Lett. 30(7), 727–729 (2009).
[CrossRef]

J. Appl. Phys. (6)

E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys. 102(8), 083104 (2007).
[CrossRef]

G. Yu and A. J. Heeger, “Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions,” J. Appl. Phys. 78(7), 4510–4515 (1995).
[CrossRef]

P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003).
[CrossRef]

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100(11), 114509 (2006).
[CrossRef]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[CrossRef]

Nat. Mater. (1)

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Nature (1)

J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature 376(6540), 498–500 (1995).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Science (1)

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

Thin Solid Films (3)

L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
[CrossRef]

M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1-2), 298–300 (2005).
[CrossRef]

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes - architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Structure of the modeled grating-based OPV cell. At the bottom is a Ti layer, on which the P3HT:PCBM active layer, the PEDOT:PSS layer, and the ITO layer are sequentially located.

Fig. 2
Fig. 2

Measured and simulated reflectance from planar cell. Layer thicknesses used in the simulations are PEDOT:PSS: 50 nm and active layer: 70 nm.

Fig. 3
Fig. 3

(left) Energy dissipation (as fraction of incident power) in the active layer, as a function of height and pitch of the grating. Active layer thickness is 75 nm. Thickness of PEDOT:PSS and ITO is 50 and 100 nm, respectively. Right hand side axis has energy dissipation in active layer relative to corresponding planar cell.

Fig. 4
Fig. 4

Energy dissipation (W/m3) colored map at 500 nm wavelength of light for (a) TE polarization in 2 μm pitch - 1.5 μm height (b)TE polarization in 1 μm pitch – 750nm height and (c) TM polarization in 2 μm pitch - 1.5 μm height (d) Flat structure, with arrows showing power flow (time averaged). The thicknesses of ITO, PEDOT:PSS and active layer are 100, 50 and 75 nm respectively. Unit is meters for geometry.

Fig. 5
Fig. 5

(a) Dependence of the ratio of maximum absorption height and height of grating on pitch size for 1:1, 4:3 and 2:1 aspect ratios for TE polarized light of 500nm wavelength. (b)Variation of maximum absorption height with wavelength of TE polarized excitation light in 2µm pitch-1.5µm height grating structure. The thicknesses of ITO, PEDOT:PSS and active layer are 100, 50 and 75 nm respectively.

Fig. 6
Fig. 6

Absorptance in 75 nm thick active layer for various textured structures and flat cell with PEDOT:PSS and ITO layer thickness of 50 and 100 nm, respectively in the case of TE (left) and TM (right) polarizations of incident light.

Fig. 7
Fig. 7

Absorptance enhancement ratio (Absorptance ratio of 2 μm pitch-1.5 μm height grating and flat cell) as a function of wavelength for 75 nm thick active layer. The thicknesses of PEDOT:PSS and ITO layers are 50 and 100 nm respectively.

Fig. 8
Fig. 8

Energy dissipation at 1/4, 1/2, 3/4 and 1 of the height, measured from the bottom of the 2 μm pitch - 1.5 μm height grating. Thicknesses of ITO, PEDOT:PSS and active layer are 75, 40 and 75 nm respectively.

Fig. 9
Fig. 9

Variation of energy dissipation (as fraction of incident power) in the active layer for different active layer thickness for textured (2 μm pitch - 1.5 μm height) and planar OPV cell in case of TE (left) and TM (right) polarizations of incident light. Inset graph in the top right corner displays energy absorbed in textured relative to planar cell as a function of active layer thickness.

Fig. 10
Fig. 10

Energy dissipation maps in (a) 2 μm pitch-1.5 μm height grating with 75 nm thick active layer (b) 2 μm pitch-1.5 μm height grating with 250 nm active layer thickness (c) flat cell with 75nm active layer thickness. Thickness of PEDOT:PSS and ITO is 50 and 100 nm respectively.

Fig. 11
Fig. 11

(a) Energy dissipation (as a fraction of incident power) and (b) Relative Energy dissipation (as fraction of energy dissipated at 0° or normal incidence) (right) in 75 nm thick active layer (P3HT /PCBM) as a function of incident angle, for flat and 2 μm pitch-1.5 μm height grating. Layer thicknesses used in the simulations are PEDOT:PSS: 50nm and ITO: 100nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k d sin θ d = ± k i sin θ i ± 2 π m Λ
sin θ d = ± m λ Λ n

Metrics