Abstract

We report the first compact silicon CMOS 1x4 tunable multiplexer/ demultiplexer using cascaded silicon photonic ring-resonator based add/drop filters with a radius of 12μm, and integrated doped-resistor thermal tuners. We measured an insertion loss of less than 1dB, a channel isolation of better than 16dB for a channel spacing of 200GHz, and a uniform 3dB pass band larger than 0.4nm across all four channels. We demonstrated accurate channel alignment to WDM ITU grid wavelengths using integrated silicon heaters with a tuning efficiency of 90pm/mW. Using this device in a 10Gbps data link, we observed a low power penalty of 0.6dB.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computing microsystems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
    [CrossRef]
  2. A. Shacham, et al., “On the Design of a Photonic Network-on-Chip,” Proceedings of the First International Symposium on Networks-on-Chip (NOCS), 2007.
  3. D. Vantrease et al., “Corona: System Implications of Emerging Nanophotonic Technology,” ISCA '08, pp. 153–164, June 2008.
  4. C. Batten et al., “Building manycore processor-to-DRAM network with monolithic silicon photonics,”HOTI 2008, pp.21–30, Aug. 2008.
  5. K. Sasaki, A. Motegi, F. Ohno, and T. Baba, “Si Photonic Wire AWG of 70 × 60 μm2 Size, ” IEEE Conference on Lasers & Electro-Optics (CLEO), pp.478–479, Aug. 2005.
  6. D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Novel Fabrication Tolerant Flat-Top Demultiplexers Based on Etched Diffraction Gratings in SOI,” IEEE Conference on Group IV Photonics, pp.386–388, Sept. 2008.
  7. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Proposed silicon wire interleaver structure,” Opt. Express 16(11), 7849–7859 (2008).
    [CrossRef] [PubMed]
  8. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
    [CrossRef]
  9. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An Eight-Channel Add–Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid,” IEEE Photon. Technol. Lett. 11(6), 691–693 (1999).
    [CrossRef]
  10. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
    [CrossRef]
  11. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” IEEE LEOS Conference on Quantum electronics and Laser Science (CLEO/QELS), pp.1–2, June 2009.
  12. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
    [CrossRef]
  13. M. A. Popovic, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, and E. P. Ippen, F. X. Kartner, and H. I. Smith, “Multistage high-order microring-resonator filters with relaxed tolerances for high through-port extinction,” IEEE Conference on Lasers & Electro-Optics (CLEO), pp266–268, Aug. 2005.
  14. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Multiple-channel silicon micro-resonator based filters for WDM applications,” Opt. Express 15(12), 7489–7498 (2007).
    [CrossRef] [PubMed]
  15. C. W. Holzwarth, T. Barwicz, M. A. Popović, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and I. H. Smith,“Accurate resonant frequency spacing of microring filters without post fabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
    [CrossRef]
  16. C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, (Wiley Series in Microwave and Optical Engineering, 1999).
  17. O. Schwelb, “Transmission, Group Delay, and Dispersion in Single-Ring Optical Resonators and Add/Drop Filters—A Tutorial Overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004).
    [CrossRef]
  18. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [CrossRef]
  19. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
    [CrossRef]

2009 (1)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computing microsystems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

C. W. Holzwarth, T. Barwicz, M. A. Popović, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and I. H. Smith,“Accurate resonant frequency spacing of microring filters without post fabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

2004 (2)

O. Schwelb, “Transmission, Group Delay, and Dispersion in Single-Ring Optical Resonators and Add/Drop Filters—A Tutorial Overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004).
[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

2002 (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

1999 (1)

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An Eight-Channel Add–Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid,” IEEE Photon. Technol. Lett. 11(6), 691–693 (1999).
[CrossRef]

1998 (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

Absil, P. P.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Barwicz, T.

C. W. Holzwarth, T. Barwicz, M. A. Popović, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and I. H. Smith,“Accurate resonant frequency spacing of microring filters without post fabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An Eight-Channel Add–Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid,” IEEE Photon. Technol. Lett. 11(6), 691–693 (1999).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

Cunningham, J. E.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computing microsystems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Fang, Q.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Gill, D.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Haus, H. A.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

Ho, R.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computing microsystems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Holzwarth, C. W.

C. W. Holzwarth, T. Barwicz, M. A. Popović, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and I. H. Smith,“Accurate resonant frequency spacing of microring filters without post fabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Hryniewicz, J. V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Ippen, E. P.

C. W. Holzwarth, T. Barwicz, M. A. Popović, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and I. H. Smith,“Accurate resonant frequency spacing of microring filters without post fabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Johnson, F. G.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Kaneko, T.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An Eight-Channel Add–Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid,” IEEE Photon. Technol. Lett. 11(6), 691–693 (1999).
[CrossRef]

Kärtner, F. X.

C. W. Holzwarth, T. Barwicz, M. A. Popović, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and I. H. Smith,“Accurate resonant frequency spacing of microring filters without post fabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Khan, M. H.

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

King, O.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Koka, P.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computing microsystems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Kokubun, Y.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An Eight-Channel Add–Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid,” IEEE Photon. Technol. Lett. 11(6), 691–693 (1999).
[CrossRef]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computing microsystems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Kwong, D. L.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

Lexau, J.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computing microsystems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Li, G.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computing microsystems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An Eight-Channel Add–Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid,” IEEE Photon. Technol. Lett. 11(6), 691–693 (1999).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

Lo, G. Q.

Pan, W.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An Eight-Channel Add–Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid,” IEEE Photon. Technol. Lett. 11(6), 691–693 (1999).
[CrossRef]

Popovic, M. A.

C. W. Holzwarth, T. Barwicz, M. A. Popović, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and I. H. Smith,“Accurate resonant frequency spacing of microring filters without post fabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Qi, M.

Rakich, P. T.

C. W. Holzwarth, T. Barwicz, M. A. Popović, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and I. H. Smith,“Accurate resonant frequency spacing of microring filters without post fabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Sato, S.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An Eight-Channel Add–Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid,” IEEE Photon. Technol. Lett. 11(6), 691–693 (1999).
[CrossRef]

Schwelb, O.

Schwetman, H.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computing microsystems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Seiferth, F.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Shen, H.

Shubin, I.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computing microsystems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Smith, I. H.

C. W. Holzwarth, T. Barwicz, M. A. Popović, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and I. H. Smith,“Accurate resonant frequency spacing of microring filters without post fabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Song, J.

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Tao, S. H.

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Trakalo, M.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Van, V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Xiao, S.

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

Yu, M. B.

Zheng, X.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computing microsystems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

IEEE J. Lightwave Tech. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An Eight-Channel Add–Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid,” IEEE Photon. Technol. Lett. 11(6), 691–693 (1999).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (1)

C. W. Holzwarth, T. Barwicz, M. A. Popović, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and I. H. Smith,“Accurate resonant frequency spacing of microring filters without post fabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Opt. Express (2)

Proc. IEEE (1)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computing microsystems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Other (8)

A. Shacham, et al., “On the Design of a Photonic Network-on-Chip,” Proceedings of the First International Symposium on Networks-on-Chip (NOCS), 2007.

D. Vantrease et al., “Corona: System Implications of Emerging Nanophotonic Technology,” ISCA '08, pp. 153–164, June 2008.

C. Batten et al., “Building manycore processor-to-DRAM network with monolithic silicon photonics,”HOTI 2008, pp.21–30, Aug. 2008.

K. Sasaki, A. Motegi, F. Ohno, and T. Baba, “Si Photonic Wire AWG of 70 × 60 μm2 Size, ” IEEE Conference on Lasers & Electro-Optics (CLEO), pp.478–479, Aug. 2005.

D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Novel Fabrication Tolerant Flat-Top Demultiplexers Based on Etched Diffraction Gratings in SOI,” IEEE Conference on Group IV Photonics, pp.386–388, Sept. 2008.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” IEEE LEOS Conference on Quantum electronics and Laser Science (CLEO/QELS), pp.1–2, June 2009.

M. A. Popovic, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, and E. P. Ippen, F. X. Kartner, and H. I. Smith, “Multistage high-order microring-resonator filters with relaxed tolerances for high through-port extinction,” IEEE Conference on Lasers & Electro-Optics (CLEO), pp266–268, Aug. 2005.

C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, (Wiley Series in Microwave and Optical Engineering, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Add/drop filter using ring resonator coupling with two bus waveguides.

Fig. 2
Fig. 2

Ring add/drop filter profile versus different bus waveguide to ring coupling ratio for given ring waveguide loss (α=10dB/cm) and coupler amplitude loss (a=0.999).

Fig. 3
Fig. 3

Measured bus waveguide to ring coupling ratio for different gaps and different ring radius of 10μm,20μm, and 20μm.

Fig. 4
Fig. 4

Fabricated 1x4 multiplexer/demultiplexer by cascading 4 ring add/drop filters with integrated doped resistor thermal tuner (shown in the inset SEM picture) using FreeScale 130nm SOI CMOS process. Grating couplers are used for optical I/Os.

Fig. 5
Fig. 5

The through port (red) and add/drop port (blue) spectra of the fabricated CMOS ring add/drop filter. The inset blow-up plot shows the details of one of its resonances, indicating 0.4nm 3dB pass band, and better than 16dB channel isolation for 1.6nm channel spacing.

Fig. 6
Fig. 6

The measured through port spectra of the 4-channel CMOS ring multiplexer/demultiplexer.

Fig. 7
Fig. 7

Measured thermal tuning performance with the integrated doped resistor heater. Uniform performance obtained across 4 channels with tuning efficiency of about 90pm/mW.

Fig. 8
Fig. 8

The through spectra (light blue) and drop spectrums (red, blue, black, and green) of the CMOS 4-channel WDM multiplexer/demultiplexer thermally tuned to WDM ITU wavelength channels 1554.13nm, 1555.75nm, 1557.36nm, and 1558.98nm.

Fig. 9
Fig. 9

BER versus receiver power for transmitter/receiver back-to-back (black) and through the CMOS ring add/drop filter (blue). About 0.6dB power penalty at receiver is observed.

Fig. 10
Fig. 10

BER versus received power for 10Gbps data transmission through the CMOS ring add/drop filter with center wavelength offset of 0nm, 0.04nm, 0.08nm, 0.125nm, and 0.267nm respectively. Power penalty due to the wavelength offset from the filter resonance peak was observed to be negligible.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S 21 = a 1 K 1 σ 1 K 2 e j β 2 π R 1 G e j β 2 π R , K i < < 1
S 31 = a 2 K 1 K 2 e α 2 π R e j β 2 π R 1 G e j β 2 π R , K i < < 1
δ λ F W H M = λ 2 π n g 2 π R 1 G G
K 1 = K 2 = K
L o s s T h r o u g h = [ 10 log 10 ( | S 21 | λ c 2 ) + L o s s G C ]
L o s s D r o p = [ 10 log 10 ( | S 31 | λ c 2 ) + L o s s G C ]

Metrics