Abstract

It is now commonly accepted that, in large pitch hollow-core ‘kagomé’ lattice fibers, the loss spectrum is related to resonances of the thin silica webs in the photonic crystal cladding. Moreover, coherent scattering from successive holes’ layers cannot be obtained and adding holes’ layers does not decrease the loss level. In this communication, cross-comparison of experimental data and accurate numerical modeling is presented that helps demonstrate that waveguiding in large pitch hollow-core fibers arises from the antiresonance of the core surround only and does not originate from the photonic crystal cladding. The glass webs only mechanically support the core surround and are sources of extra leakage. Large pitch hollow-core fibers exhibit features of thin walled and thick walled tubular waveguides, the first one tailoring the transmission spectrum while the second one is responsible for the increased loss figure. As a consequence, an approximate calculus, based on specific features of both types of waveguides, gives the loss spectrum, in very good agreement with experimental data. Finally, a minimalist hollow-core microstructured fiber, the cladding of which consists of six thin bridges suspending the core surround, is proposed for the first time.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [CrossRef] [PubMed]
  2. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  3. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
    [CrossRef] [PubMed]
  4. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [CrossRef] [PubMed]
  5. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
    [CrossRef] [PubMed]
  6. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [CrossRef] [PubMed]
  7. S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
    [CrossRef] [PubMed]
  8. F. Gérôme, S. Février, A. D. Pryamikov, J.-L. Auguste, R. Jamier, J.-M. Blondy, M. E. Likhachev, M. M. Bubnov, S. L. Semjonov, and E. M. Dianov, “Highly dispersive large mode area photonic bandgap fiber,” Opt. Lett. 32(10), 1208–1210 (2007).
    [CrossRef] [PubMed]
  9. S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J.-L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett. 34(19), 2888–2890 (2009).
    [CrossRef] [PubMed]
  10. A. Peyrilloux, S. Février, J. Marcou, L. Berthelot, D. Pagnoux, and P. Sansonetti, “Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 4, 257–262 (2002).
    [CrossRef]
  11. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  12. A. B. Manenkov, “Quasioptics of waveguides with selective reflecting dielectric walls”, in Proc. of the fifth colloquium on microwave communications, Budapest, Hungary, 24–30 June, 1974.
  13. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
    [CrossRef]
  14. P. Viale, “Management of nonlinear effects in photonic bandgap fibers,” Ph. D. thesis, University of Limoges, n°42–2006 (2006)
  15. F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” submitted to Conference on Lasers and Electro-Optics (2010)

2009 (1)

2007 (4)

2006 (2)

2002 (2)

A. Peyrilloux, S. Février, J. Marcou, L. Berthelot, D. Pagnoux, and P. Sansonetti, “Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 4, 257–262 (2002).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Argyros, A.

Auguste, J.-L.

Beaudou, B.

Benabid, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Berthelot, L.

A. Peyrilloux, S. Février, J. Marcou, L. Berthelot, D. Pagnoux, and P. Sansonetti, “Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 4, 257–262 (2002).
[CrossRef]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Blondy, J.-M.

Bubnov, M. M.

Burger, S.

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Dianov, E. M.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Février, S.

Gérôme, F.

Guryanov, A. N.

Humbert, G.

Jamier, R.

Khopin, V. F.

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Labruyère, A.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

Likhachev, M. E.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Marcou, J.

A. Peyrilloux, S. Février, J. Marcou, L. Berthelot, D. Pagnoux, and P. Sansonetti, “Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 4, 257–262 (2002).
[CrossRef]

Pagnoux, D.

A. Peyrilloux, S. Février, J. Marcou, L. Berthelot, D. Pagnoux, and P. Sansonetti, “Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 4, 257–262 (2002).
[CrossRef]

Pearce, G. J.

Peyrilloux, A.

A. Peyrilloux, S. Février, J. Marcou, L. Berthelot, D. Pagnoux, and P. Sansonetti, “Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 4, 257–262 (2002).
[CrossRef]

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Pla, J.

Poulton, C. G.

Pryamikov, A. D.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. St. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Salganskii, M. Y.

Sansonetti, P.

A. Peyrilloux, S. Février, J. Marcou, L. Berthelot, D. Pagnoux, and P. Sansonetti, “Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 4, 257–262 (2002).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Semjonov, S. L.

St J Russell, P.

Wiederhecker, G. S.

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

J. Opt. A, Pure Appl. Opt. (1)

A. Peyrilloux, S. Février, J. Marcou, L. Berthelot, D. Pagnoux, and P. Sansonetti, “Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 4, 257–262 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Science (3)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Other (3)

A. B. Manenkov, “Quasioptics of waveguides with selective reflecting dielectric walls”, in Proc. of the fifth colloquium on microwave communications, Budapest, Hungary, 24–30 June, 1974.

P. Viale, “Management of nonlinear effects in photonic bandgap fibers,” Ph. D. thesis, University of Limoges, n°42–2006 (2006)

F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” submitted to Conference on Lasers and Electro-Optics (2010)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Loss spectrum of the ‘kagomé’ lattice HC-PCF proposed in [9] for low-loss guiding of UV radiations. Upright arrows are located at cut-off wavelengths of cladding bridges’ modes. In-set: electron micrograph of the manufactured fiber.

Fig. 2
Fig. 2

Output intensity pattern from the ‘kagomé’ lattice HC-PCF obtained when white light is launched at the input, without selective injection.

Fig. 3
Fig. 3

Measured loss spectrum compared to that computed for Bragg fibers with one or two high-index rings. In-set: Bragg fiber models used.

Fig. 4
Fig. 4

(a) K-PCF loss spectra computed for N = 1, 2 and 4. (b) K-PCF loss spectra measured and computed for N = 4 and N = 0. Inset: models used and norm of the electric field distribution (logarithmic scale) computed at 0.5 µm for N = 4.

Fig. 5
Fig. 5

(a) Real part of effective index and (b) associated loss computed for N = 0 from 0.71 µm to 0.75 µm in 0.2 nm steps Inset: model used, |E| at 0.726 µm and 0.729 µm. (c) Loss computed for N = 1.

Fig. 6
Fig. 6

Loss spectrum of the actual manufactured fiber compared to that of the one-layer Bragg fiber divided by a factor of λ/RC. t = 0.6 µm, RC = 15.5 µm.

Fig. 7
Fig. 7

(a) Morphology of the minimalist hollow-core microstructured fiber. Black: air, white: silica. (b) Computed intensity distribution of the fundamental mode.

Fig. 8
Fig. 8

Attenuation spectra in the minimalist hollow-core microstructured fiber. Insets show the fiber end facet as well as the intensity distribution observed at 0.6-µm wavelength.

Metrics