Abstract

We demonstrate a method to fabricate ultra-thin, ultra-smooth and low-loss silver (Ag) films using a very thin germanium (Ge) layer as a wetting material and a rapid post-annealing treatment. The addition of a Ge wetting layer greatly reduces the surface roughness of Ag films deposited on a glass substrate by electron-beam evaporation. The percolation threshold of Ag films and the minimal thickness of a uniformly continuous Ag film were significantly reduced using a Ge wetting layer in the fabrication. A rapid post-annealing treatment is demonstrated to reduce the loss of the ultra-thin Ag film to the ideal values allowed by the quantum size effect in smaller grains. Using the same wetting method, we have also extended our studies to ultra-smooth silver-silica lamellar composite films with ultra-thin Ag sublayers.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  4. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
    [CrossRef]
  5. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
    [CrossRef] [PubMed]
  6. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. Fang, “Molecular Scale Imaging with a Smooth Superlens” (2009) http://arxiv.org/abs/0906.1213 .
  7. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
    [CrossRef]
  8. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
    [CrossRef] [PubMed]
  9. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686–1686 (2007).
    [CrossRef] [PubMed]
  10. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens,” J. Opt. Soc. Am. A 24(10), A52–A61 (2007).
    [CrossRef]
  11. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33(1), 43–45 (2008).
    [CrossRef]
  12. A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett. 94(7), 071102 (2009).
    [CrossRef]
  13. Y. Xiong, Z. W. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
    [CrossRef]
  14. X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [CrossRef] [PubMed]
  15. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett. 32(23), 3432–3434 (2007).
    [CrossRef] [PubMed]
  16. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
    [CrossRef]
  17. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
    [CrossRef] [PubMed]
  18. P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  19. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. S. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
    [CrossRef] [PubMed]
  20. L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer,” Nano Lett. 9(1), 178–182 (2009).
    [CrossRef]
  21. V. Shalaev, Optical properties of nanostructured random media (Springer, Berlin, 2002).
  22. P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
    [CrossRef]
  23. K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
    [CrossRef]
  24. A. Sarychev, and V. Shalaev, Electrodynamics of metamaterials (World Scientific, Singapore, 2007).
  25. V. M. Shalaev and M. I. Stockman, “Fractals - Optical Susceptibility and Giant Raman-Scattering,” Z. Phys. D At. Mol. Clust. 10(1), 71–79 (1988).
    [CrossRef]
  26. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure and Appl. Opt. special issue on Metamaterials (Amst.) 7, S32–S37 (2005).
  27. H. Lüth, Solid surfaces, interfaces and thin films (Springer, New York, NY, 2001).
  28. J. Israelachvili, Intermolecular and surface forces (Academic press, London, 1992).
  29. K. Kendall, “Solid-Surface Energy Measured Electrically,” J. Phys. D Appl. Phys. 23(10), 1329–1331 (1990).
    [CrossRef]
  30. R. J. Jaccodine, “Surface Energy of Germanium and Silicon,” J. Electrochem. Soc. 110(6), 524–527 (1963).
    [CrossRef]
  31. D. R. Lide, “CRC Handbook of Chemistry and Physics,” (CRC Press, Boca Raton, FL, 2008).
  32. X. Ni, Z. Liu, and A. V. Kildishev, “PhotonicsDB: Optical Constants” (2007), DOI:10254/nanohub-r3692.5.
  33. S. Ishii, U. K. Chettiar, X. Ni, and A. V. Kildishev, “PhotonicsRT: Wave Propagation in Multilayer Structures” (2008), DOI:10254/nanohub-r5968.8.
  34. A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557(1-3), 269–280 (2004).
    [CrossRef]
  35. A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001).
    [CrossRef]

2009 (3)

A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett. 94(7), 071102 (2009).
[CrossRef]

Y. Xiong, Z. W. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
[CrossRef]

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer,” Nano Lett. 9(1), 178–182 (2009).
[CrossRef]

2008 (4)

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[CrossRef]

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33(1), 43–45 (2008).
[CrossRef]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. S. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

2007 (5)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens,” J. Opt. Soc. Am. A 24(10), A52–A61 (2007).
[CrossRef]

A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett. 32(23), 3432–3434 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

2006 (1)

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

2005 (4)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure and Appl. Opt. special issue on Metamaterials (Amst.) 7, S32–S37 (2005).

2004 (2)

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557(1-3), 269–280 (2004).
[CrossRef]

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
[CrossRef]

2003 (2)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[CrossRef]

2001 (1)

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1990 (1)

K. Kendall, “Solid-Surface Energy Measured Electrically,” J. Phys. D Appl. Phys. 23(10), 1329–1331 (1990).
[CrossRef]

1988 (1)

V. M. Shalaev and M. I. Stockman, “Fractals - Optical Susceptibility and Giant Raman-Scattering,” Z. Phys. D At. Mol. Clust. 10(1), 71–79 (1988).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1963 (1)

R. J. Jaccodine, “Surface Energy of Germanium and Silicon,” J. Electrochem. Soc. 110(6), 524–527 (1963).
[CrossRef]

Alekseyev, L. V.

Ambati, M.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Blaikie, R. J.

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
[CrossRef]

Cai, W. S.

Chaturvedi, P.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer,” Nano Lett. 9(1), 178–182 (2009).
[CrossRef]

Chettiar, U. K.

A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett. 94(7), 071102 (2009).
[CrossRef]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. S. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Drachev, V. P.

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. S. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[CrossRef]

Durant, S.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Fang, N. X.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer,” Nano Lett. 9(1), 178–182 (2009).
[CrossRef]

Genov, D. A.

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[CrossRef]

Hilger, A.

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557(1-3), 269–280 (2004).
[CrossRef]

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001).
[CrossRef]

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Islam, M. S.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer,” Nano Lett. 9(1), 178–182 (2009).
[CrossRef]

Jaccodine, R. J.

R. J. Jaccodine, “Surface Energy of Germanium and Silicon,” J. Electrochem. Soc. 110(6), 524–527 (1963).
[CrossRef]

Jacob, Z.

A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett. 94(7), 071102 (2009).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens,” J. Opt. Soc. Am. A 24(10), A52–A61 (2007).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kendall, K.

K. Kendall, “Solid-Surface Energy Measured Electrically,” J. Phys. D Appl. Phys. 23(10), 1329–1331 (1990).
[CrossRef]

Kildishev, A. V.

Kobayashi, N. P.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer,” Nano Lett. 9(1), 178–182 (2009).
[CrossRef]

Kreibig, U.

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557(1-3), 269–280 (2004).
[CrossRef]

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001).
[CrossRef]

Lee, H.

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Liu, Z.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Liu, Z. W.

Y. Xiong, Z. W. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
[CrossRef]

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

Melville, D. O. S.

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
[CrossRef]

Narimanov, E.

Narimanov, E. E.

A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett. 94(7), 071102 (2009).
[CrossRef]

A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett. 32(23), 3432–3434 (2007).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure and Appl. Opt. special issue on Metamaterials (Amst.) 7, S32–S37 (2005).

Nelson, M. A.

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[CrossRef]

Nyga, P.

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[CrossRef]

Pendry, J. B.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Pinchuk, A.

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557(1-3), 269–280 (2004).
[CrossRef]

Podolskiy, V. A.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure and Appl. Opt. special issue on Metamaterials (Amst.) 7, S32–S37 (2005).

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Sarychev, A. K.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure and Appl. Opt. special issue on Metamaterials (Amst.) 7, S32–S37 (2005).

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[CrossRef]

Seal, K.

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[CrossRef]

Shalaev, V. M.

A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett. 94(7), 071102 (2009).
[CrossRef]

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33(1), 43–45 (2008).
[CrossRef]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. S. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure and Appl. Opt. special issue on Metamaterials (Amst.) 7, S32–S37 (2005).

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[CrossRef]

V. M. Shalaev and M. I. Stockman, “Fractals - Optical Susceptibility and Giant Raman-Scattering,” Z. Phys. D At. Mol. Clust. 10(1), 71–79 (1988).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Srituravanich, W.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Stockman, M. I.

V. M. Shalaev and M. I. Stockman, “Fractals - Optical Susceptibility and Giant Raman-Scattering,” Z. Phys. D At. Mol. Clust. 10(1), 71–79 (1988).
[CrossRef]

Sun, C.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tenfelde, M.

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001).
[CrossRef]

Thoreson, M. D.

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[CrossRef]

Vj, L.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer,” Nano Lett. 9(1), 178–182 (2009).
[CrossRef]

Wang, S. Y.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer,” Nano Lett. 9(1), 178–182 (2009).
[CrossRef]

Williams, R. S.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer,” Nano Lett. 9(1), 178–182 (2009).
[CrossRef]

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Wolf, C. R.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
[CrossRef]

Wu, W.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer,” Nano Lett. 9(1), 178–182 (2009).
[CrossRef]

Xiong, Y.

Y. Xiong, Z. W. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
[CrossRef]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Ying, Z. C.

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[CrossRef]

Yuan, H. K.

Zhang, X.

Y. Xiong, Z. W. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
[CrossRef]

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (2)

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[CrossRef]

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
[CrossRef]

A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett. 94(7), 071102 (2009).
[CrossRef]

Y. Xiong, Z. W. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
[CrossRef]

J. Electrochem. Soc. (1)

R. J. Jaccodine, “Surface Energy of Germanium and Silicon,” J. Electrochem. Soc. 110(6), 524–527 (1963).
[CrossRef]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

J. Opt. A: Pure and Appl. Opt. special issue on Metamaterials (Amst.) (1)

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure and Appl. Opt. special issue on Metamaterials (Amst.) 7, S32–S37 (2005).

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

K. Kendall, “Solid-Surface Energy Measured Electrically,” J. Phys. D Appl. Phys. 23(10), 1329–1331 (1990).
[CrossRef]

N. J. Phys. (1)

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Nano Lett. (2)

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer,” Nano Lett. 9(1), 178–182 (2009).
[CrossRef]

Nat. Mater. (1)

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (3)

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (3)

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Surf. Sci. (1)

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557(1-3), 269–280 (2004).
[CrossRef]

Z. Phys. D At. Mol. Clust. (1)

V. M. Shalaev and M. I. Stockman, “Fractals - Optical Susceptibility and Giant Raman-Scattering,” Z. Phys. D At. Mol. Clust. 10(1), 71–79 (1988).
[CrossRef]

Other (8)

H. Lüth, Solid surfaces, interfaces and thin films (Springer, New York, NY, 2001).

J. Israelachvili, Intermolecular and surface forces (Academic press, London, 1992).

D. R. Lide, “CRC Handbook of Chemistry and Physics,” (CRC Press, Boca Raton, FL, 2008).

X. Ni, Z. Liu, and A. V. Kildishev, “PhotonicsDB: Optical Constants” (2007), DOI:10254/nanohub-r3692.5.

S. Ishii, U. K. Chettiar, X. Ni, and A. V. Kildishev, “PhotonicsRT: Wave Propagation in Multilayer Structures” (2008), DOI:10254/nanohub-r5968.8.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. Fang, “Molecular Scale Imaging with a Smooth Superlens” (2009) http://arxiv.org/abs/0906.1213 .

A. Sarychev, and V. Shalaev, Electrodynamics of metamaterials (World Scientific, Singapore, 2007).

V. Shalaev, Optical properties of nanostructured random media (Springer, Berlin, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a curvilinear lamellar metal-dielectric structure for hyperlens applications.

Fig. 2
Fig. 2

Far-field spectra of Ag films with varying thicknesses deposited on SiO2 with a 1-nm Ge layer. (a) transmittance, (b) reflectance and (c) absorbance. The percolation threshold is estimated to occur around a Ag thickness of 3 nm.

Fig. 3
Fig. 3

Comparison between a Ag layer with and without a Ge wetting layer. (a) SEM image of 6-nm-thick Ag continuous film on a Ge/SiO2/Si(100) substrate. The light-gray area in the image is the Ag continuous film, and the black area is an uncoated region of the Si substrate. (b) SEM image of 6-nm-thick Ag film fabricated in the same way but without the Ge wetting layer. The film consists of isolated islands of metal.

Fig. 4
Fig. 4

Representative AFM topograph of a lamellar (10nm Ag/1nm Ge/10nm SiO2)3/glass sample. The RMS roughness is 0.42 nm, which is comparable to that of a single-layer Ag sample deposited on a thin Ge layer.

Fig. 5
Fig. 5

Comparison of measured and simulated transmittance and reflectance spectra for Ag films beyond the percolation threshold deposited on Ge wetting layers. The solid lines represent the experimental results, and dashed lines are the simulated results.

Fig. 6
Fig. 6

Comparison of measured and simulated transmittance, reflectance and absorbance spectra for a (10nm Ag/1nm Ge/10nm SiO2)3 lamellar composite film. The solid lines represent the experimental results, while the dashed lines are the simulation results.

Fig. 7
Fig. 7

Comparison of retrieved complex permittivity curves from samples with Ge wetting layers and those of bulk Ag and a fitted Drude-Lorentz model.

Fig. 8
Fig. 8

Comparison of retrieved imaginary part of permittivity ( ε ) curves of 10-nm Ag films on a 1-nm Ge wetting layer before and after annealing.

Fig. 9
Fig. 9

Theoretically calculated and experimentally retrieved damping rates (γp ) of Ag films at different thicknesses on a 1-nm Ge wetting layer. Theoretical results were calculated through Eq. (2) with A0 = 0.25.

Tables (1)

Tables Icon

Table 1 Ag films with varying thicknesses

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε = ε 1 ω p 2 ω 2 + i γ p ω + m = 1 5 f m ω m 2 ω m 2 ω 2 i γ m ω ,
γ p = γ + A 0 υ F r ,

Metrics