Abstract

We demonstrate the generation of amplitude-shift-keying (ASK) optical signals using a system of parallel microring resonators. By independently modulating two symmetric microring resonators arranged in a Mach-Zehnder configuration, we realize the generation of three levels. The proposed scheme can be extended to any number of logic levels, which effectively increases the data rate of an optical link using slower modulators. Here, we separately utilize thermo-optic and ultrafast all-optical modulation schemes to generate ASK signals on a silicon photonic chip.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 (2009).
    [CrossRef] [PubMed]
  2. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
    [CrossRef] [PubMed]
  3. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007).
    [CrossRef] [PubMed]
  4. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [CrossRef] [PubMed]
  5. P. J. Winzer and R. J. Essiambre, “Advanced Optical Modulation Formats,” Proc. IEEE 94(5), 952–985 (2006).
    [CrossRef]
  6. L. Zhou, H. Chen, and A. W. Poon, “On-Chip NRZ-to-PRZ Format Conversion Using Narrow-Band Silicon Microring Resonator-Based Notch Filters,” J. Lightwave Technol. 26(13), 1950–1955 (2008).
    [CrossRef]
  7. L. Zhang, Y. Li, J. Yang, R. G. Beausoleil, and A. E. Willner, “Creating RZ Data Modulation Formats Using Parallel Silicon Microring Modulators for Pulse Carving in DPSK,” in C (Optical Society of America, 2008), paper CWN4.
  8. R. Ramaswami, and K. N. Sivarajan, Optical Networks: A Practical Perspective, (Morgan Kaufmann, 2002)
  9. Q. Xu, “Controlling the flow of light on chip with microring- resonator-based silicon photonic devices,” (PhD Thesis, Cornell University 2007)
  10. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [CrossRef] [PubMed]
  11. F. Della Corte, M. Montefusco, L. Moretti, I. Rendina, and A. Rubino, “Study of the thermo-optic effect in hydrogenated amorphous silicon and hydrogenated amorphous silicon carbide between 300 and 500 K at 1.55 um,” Appl. Phys. Lett. 79(2), 168–170 (2001).
    [CrossRef]
  12. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  13. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]
  14. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30(21), 2891–2893 (2005).
    [CrossRef] [PubMed]
  15. P. J. Winzer, and R. J. Essiambre, “Receivers for advanced optical modulation formats,” in Lasers and Electro-Optics Society, 2003. LEOS 2003. The 16th Annual Meeting of the IEEE, 27–28 Oct. 2003.
  16. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
    [CrossRef] [PubMed]

2009 (2)

2008 (3)

2007 (2)

2006 (1)

P. J. Winzer and R. J. Essiambre, “Advanced Optical Modulation Formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

2005 (1)

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

F. Della Corte, M. Montefusco, L. Moretti, I. Rendina, and A. Rubino, “Study of the thermo-optic effect in hydrogenated amorphous silicon and hydrogenated amorphous silicon carbide between 300 and 500 K at 1.55 um,” Appl. Phys. Lett. 79(2), 168–170 (2001).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Beausoleil, R. G.

Bergman, K.

Biberman, A.

Cardenas, J.

Chen, H.

Chen, L.

Chetrit, Y.

Ciftcioglu, B.

Della Corte, F.

F. Della Corte, M. Montefusco, L. Moretti, I. Rendina, and A. Rubino, “Study of the thermo-optic effect in hydrogenated amorphous silicon and hydrogenated amorphous silicon carbide between 300 and 500 K at 1.55 um,” Appl. Phys. Lett. 79(2), 168–170 (2001).
[CrossRef]

Essiambre, R. J.

P. J. Winzer and R. J. Essiambre, “Advanced Optical Modulation Formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

Fattal, D.

Izhaky, N.

Lee, B. G.

Liao, L.

Lipson, M.

Liu, A.

Manipatruni, S.

Montefusco, M.

F. Della Corte, M. Montefusco, L. Moretti, I. Rendina, and A. Rubino, “Study of the thermo-optic effect in hydrogenated amorphous silicon and hydrogenated amorphous silicon carbide between 300 and 500 K at 1.55 um,” Appl. Phys. Lett. 79(2), 168–170 (2001).
[CrossRef]

Moretti, L.

F. Della Corte, M. Montefusco, L. Moretti, I. Rendina, and A. Rubino, “Study of the thermo-optic effect in hydrogenated amorphous silicon and hydrogenated amorphous silicon carbide between 300 and 500 K at 1.55 um,” Appl. Phys. Lett. 79(2), 168–170 (2001).
[CrossRef]

Nguyen, H.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Paniccia, M.

Poitras, C. B.

Poon, A. W.

Preble, S. F.

Preston, K.

Rendina, I.

F. Della Corte, M. Montefusco, L. Moretti, I. Rendina, and A. Rubino, “Study of the thermo-optic effect in hydrogenated amorphous silicon and hydrogenated amorphous silicon carbide between 300 and 500 K at 1.55 um,” Appl. Phys. Lett. 79(2), 168–170 (2001).
[CrossRef]

Robinson, J. T.

Rubin, D.

Rubino, A.

F. Della Corte, M. Montefusco, L. Moretti, I. Rendina, and A. Rubino, “Study of the thermo-optic effect in hydrogenated amorphous silicon and hydrogenated amorphous silicon carbide between 300 and 500 K at 1.55 um,” Appl. Phys. Lett. 79(2), 168–170 (2001).
[CrossRef]

Schmidt, B.

Schmidt, B. S.

Shakya, J.

Sherwood-Droz, N.

Wang, H.

Winzer, P. J.

P. J. Winzer and R. J. Essiambre, “Advanced Optical Modulation Formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

Xu, Q.

Zhou, L.

Appl. Phys. Lett. (1)

F. Della Corte, M. Montefusco, L. Moretti, I. Rendina, and A. Rubino, “Study of the thermo-optic effect in hydrogenated amorphous silicon and hydrogenated amorphous silicon carbide between 300 and 500 K at 1.55 um,” Appl. Phys. Lett. 79(2), 168–170 (2001).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Proc. IEEE (1)

P. J. Winzer and R. J. Essiambre, “Advanced Optical Modulation Formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

Other (4)

L. Zhang, Y. Li, J. Yang, R. G. Beausoleil, and A. E. Willner, “Creating RZ Data Modulation Formats Using Parallel Silicon Microring Modulators for Pulse Carving in DPSK,” in C (Optical Society of America, 2008), paper CWN4.

R. Ramaswami, and K. N. Sivarajan, Optical Networks: A Practical Perspective, (Morgan Kaufmann, 2002)

Q. Xu, “Controlling the flow of light on chip with microring- resonator-based silicon photonic devices,” (PhD Thesis, Cornell University 2007)

P. J. Winzer, and R. J. Essiambre, “Receivers for advanced optical modulation formats,” in Lasers and Electro-Optics Society, 2003. LEOS 2003. The 16th Annual Meeting of the IEEE, 27–28 Oct. 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The principle of operation of the device is illustrated - (a) two unmodulated ring resonators result in amplitude level 1. (b) Modulating one ring (blue) resonator independently results in amplitude level 2 and (c) modulating both ring resonators results in amplitude level 3.

Fig. 2
Fig. 2

Process flow in the fabrication of a-Si:H microring resonators with resistive heaters

Fig. 3
Fig. 3

(a) SEM image of the fabricated device. (b) Optical microscope image of the device with heaters

Fig. 4
Fig. 4

Experimental set-up to measure simultaneous thermootpic switching of two ring resonators. The two rings are switched individually using the thermo-optic effect by applying square wave electrical pulses at 100 Hz to produce modulated signal observed on an oscilloscope.

Fig. 5
Fig. 5

Thermal tuning of resonant wavelengths is achieved by applying heat to the individual rings.

Fig. 6
Fig. 6

(a). Temporal response of the system due to the modulation of one resonator. The other resonator is always on resonance. (b) Modulating both resonators generates three amplitude levels on a single carrier.

Fig. 7
Fig. 7

Measurement set-up to generate all-optically modulated ASK signals. The two pump pulses are delayed by 200 ps to enable the demonstration of three switching levels. PC: Polarization Controller

Fig. 8
Fig. 8

(a). The resonances of the individual resonators and through port of the entire system. Here we use a probe wavelength that is slightly blue-shifted off-resonance. (b) Three level temporal response of the system by switching two ring resonators with a 200 ps delay.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T d r o p = e 2 γ κ 1 2 κ 2 2 ( 1 t 1 t 2 e γ ) 2 + 4 t 1 t 2 e γ sin 2 [ θ ]
T = m = 1 N u T d r o p m N

Metrics