Abstract

We measure the coupling constant between the two perpendicularly polarized eigenstates of a two-frequency Vertical External Cavity Surface Emitting Laser (VECSEL). This measurement is performed for different values of the transverse spatial separation between the two perpendicularly polarized modes. The consequences of these measurements on the two-frequency operation of such class-A semiconductor lasers are discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
    [CrossRef]
  2. R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
    [CrossRef]
  3. L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702–5712 (2002).
    [CrossRef] [PubMed]
  4. K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scales in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
    [CrossRef] [PubMed]
  5. M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 μm,” Opt. Lett. 30, 2418–2420 (2005).
    [CrossRef] [PubMed]
  6. M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Tech. Lett. 16, 870–872 (2004).
    [CrossRef]
  7. L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, M. Brunel, M. Vallet, F. Bretenaker, and A. Le Floch, “Dual-frequency laser at 1.53 μm for generating high-purity optically carried microwave signals up to 20 GHz,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuL5.
    [PubMed]
  8. G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise limited operation of a monomode high cavity finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32, 650–652 (2007).
    [CrossRef] [PubMed]
  9. G. Baili, F. Bretenaker, M. Alouini, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Lightwave Tech. 26, 952–961 (2008).
    [CrossRef]
  10. G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation-oscillations,” Opt. Lett. 34, 3421–3423 (2009).
    [CrossRef] [PubMed]
  11. M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).
  12. M. M. -Tehrani and L. Mandel, “Coherence theory of the ring laser,” Phys. Rev. A 17, 677–693 (1978).
    [CrossRef]
  13. A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single-frequency continuously-tunable compact extended-cavity semiconductor laser,” Opt. Expr. 17, 9503–9508 (2009).
    [CrossRef]
  14. A. E. Siegman, Lasers (University Science Books, 1986), pp. 992–999.
  15. M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70, 2070–2072 (1997).
    [CrossRef]
  16. M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, “Existence of two coupling constants in microchip lasers,” Opt. Lett. 25, 896–898 (2000).
    [CrossRef]
  17. A. McKay, J. M. Dawes, and J.-D. Park, “Polarisation-mode coupling in (100)-cut Nd:YAG,” Opt. Expr. 15, 16342–16347 (2007).
    [CrossRef]
  18. S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: Experiment and model,” Phys. Rev. A 79, 063814 (2009).
    [CrossRef]
  19. J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
    [CrossRef]
  20. M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995).
    [CrossRef] [PubMed]
  21. M. P. van Exter, R. F. M. Hendriks, and J. P. Woerdman, “Physical insight into the polarization dynamics of semiconductor vertical-cavity lasers,” Phys. Rev. A 57, 2080–2090 (1998).
    [CrossRef]
  22. D. Burak, J. V. Moloney, and R. Binder, “Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers,” Phys. Rev. A 61, 053809 (2000).
    [CrossRef]

2009 (3)

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation-oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[CrossRef] [PubMed]

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single-frequency continuously-tunable compact extended-cavity semiconductor laser,” Opt. Expr. 17, 9503–9508 (2009).
[CrossRef]

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: Experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

2008 (2)

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

G. Baili, F. Bretenaker, M. Alouini, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Lightwave Tech. 26, 952–961 (2008).
[CrossRef]

2007 (2)

2005 (1)

2004 (2)

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Tech. Lett. 16, 870–872 (2004).
[CrossRef]

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

2002 (1)

2000 (2)

M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, “Existence of two coupling constants in microchip lasers,” Opt. Lett. 25, 896–898 (2000).
[CrossRef]

D. Burak, J. V. Moloney, and R. Binder, “Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers,” Phys. Rev. A 61, 053809 (2000).
[CrossRef]

1998 (1)

M. P. van Exter, R. F. M. Hendriks, and J. P. Woerdman, “Physical insight into the polarization dynamics of semiconductor vertical-cavity lasers,” Phys. Rev. A 57, 2080–2090 (1998).
[CrossRef]

1997 (1)

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70, 2070–2072 (1997).
[CrossRef]

1995 (2)

J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
[CrossRef]

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995).
[CrossRef] [PubMed]

1992 (1)

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scales in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef] [PubMed]

1978 (1)

M. M. -Tehrani and L. Mandel, “Coherence theory of the ring laser,” Phys. Rev. A 17, 677–693 (1978).
[CrossRef]

Alouini, M.

Amon, A.

Baili, G.

Beaudoin, G.

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single-frequency continuously-tunable compact extended-cavity semiconductor laser,” Opt. Expr. 17, 9503–9508 (2009).
[CrossRef]

Bielawski, S.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scales in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef] [PubMed]

Binder, R.

D. Burak, J. V. Moloney, and R. Binder, “Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers,” Phys. Rev. A 61, 053809 (2000).
[CrossRef]

Blanc, S.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Tech. Lett. 16, 870–872 (2004).
[CrossRef]

L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, M. Brunel, M. Vallet, F. Bretenaker, and A. Le Floch, “Dual-frequency laser at 1.53 μm for generating high-purity optically carried microwave signals up to 20 GHz,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuL5.
[PubMed]

Bretenaker, F.

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation-oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[CrossRef] [PubMed]

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: Experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

G. Baili, F. Bretenaker, M. Alouini, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Lightwave Tech. 26, 952–961 (2008).
[CrossRef]

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise limited operation of a monomode high cavity finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32, 650–652 (2007).
[CrossRef] [PubMed]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Tech. Lett. 16, 870–872 (2004).
[CrossRef]

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702–5712 (2002).
[CrossRef] [PubMed]

M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, “Existence of two coupling constants in microchip lasers,” Opt. Lett. 25, 896–898 (2000).
[CrossRef]

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70, 2070–2072 (1997).
[CrossRef]

L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, M. Brunel, M. Vallet, F. Bretenaker, and A. Le Floch, “Dual-frequency laser at 1.53 μm for generating high-purity optically carried microwave signals up to 20 GHz,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuL5.
[PubMed]

Brisset, J.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Tech. Lett. 16, 870–872 (2004).
[CrossRef]

Brunel, M.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 μm,” Opt. Lett. 30, 2418–2420 (2005).
[CrossRef] [PubMed]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Tech. Lett. 16, 870–872 (2004).
[CrossRef]

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702–5712 (2002).
[CrossRef] [PubMed]

M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, “Existence of two coupling constants in microchip lasers,” Opt. Lett. 25, 896–898 (2000).
[CrossRef]

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70, 2070–2072 (1997).
[CrossRef]

L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, M. Brunel, M. Vallet, F. Bretenaker, and A. Le Floch, “Dual-frequency laser at 1.53 μm for generating high-purity optically carried microwave signals up to 20 GHz,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuL5.
[PubMed]

Burak, D.

D. Burak, J. V. Moloney, and R. Binder, “Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers,” Phys. Rev. A 61, 053809 (2000).
[CrossRef]

Crozatier, V.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Tech. Lett. 16, 870–872 (2004).
[CrossRef]

Czarny, R.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

Dawes, J. M.

A. McKay, J. M. Dawes, and J.-D. Park, “Polarisation-mode coupling in (100)-cut Nd:YAG,” Opt. Expr. 15, 16342–16347 (2007).
[CrossRef]

Derozier, D.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scales in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef] [PubMed]

Dolfi, D.

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation-oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[CrossRef] [PubMed]

G. Baili, F. Bretenaker, M. Alouini, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Lightwave Tech. 26, 952–961 (2008).
[CrossRef]

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise limited operation of a monomode high cavity finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32, 650–652 (2007).
[CrossRef] [PubMed]

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702–5712 (2002).
[CrossRef] [PubMed]

L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, M. Brunel, M. Vallet, F. Bretenaker, and A. Le Floch, “Dual-frequency laser at 1.53 μm for generating high-purity optically carried microwave signals up to 20 GHz,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuL5.
[PubMed]

Feng, Q.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995).
[CrossRef] [PubMed]

Feugnet, G.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: Experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

Garnache, A.

Glorieux, P.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scales in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef] [PubMed]

Hendriks, R. F. M.

M. P. van Exter, R. F. M. Hendriks, and J. P. Woerdman, “Physical insight into the polarization dynamics of semiconductor vertical-cavity lasers,” Phys. Rev. A 57, 2080–2090 (1998).
[CrossRef]

Huignard, J.-P.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702–5712 (2002).
[CrossRef] [PubMed]

L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, M. Brunel, M. Vallet, F. Bretenaker, and A. Le Floch, “Dual-frequency laser at 1.53 μm for generating high-purity optically carried microwave signals up to 20 GHz,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuL5.
[PubMed]

Krakowski, M.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

Lai, N. D.

Lamb, W. E.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

Larat, C.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

Laurain, A.

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single-frequency continuously-tunable compact extended-cavity semiconductor laser,” Opt. Expr. 17, 9503–9508 (2009).
[CrossRef]

Le Floch, A.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702–5712 (2002).
[CrossRef] [PubMed]

M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, “Existence of two coupling constants in microchip lasers,” Opt. Lett. 25, 896–898 (2000).
[CrossRef]

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70, 2070–2072 (1997).
[CrossRef]

L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, M. Brunel, M. Vallet, F. Bretenaker, and A. Le Floch, “Dual-frequency laser at 1.53 μm for generating high-purity optically carried microwave signals up to 20 GHz,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuL5.
[PubMed]

Mandel, L.

M. M. -Tehrani and L. Mandel, “Coherence theory of the ring laser,” Phys. Rev. A 17, 677–693 (1978).
[CrossRef]

Mandel, P.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scales in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef] [PubMed]

McKay, A.

A. McKay, J. M. Dawes, and J.-D. Park, “Polarisation-mode coupling in (100)-cut Nd:YAG,” Opt. Expr. 15, 16342–16347 (2007).
[CrossRef]

Merlet, T.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Tech. Lett. 16, 870–872 (2004).
[CrossRef]

Moloney, J. V.

D. Burak, J. V. Moloney, and R. Binder, “Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers,” Phys. Rev. A 61, 053809 (2000).
[CrossRef]

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995).
[CrossRef] [PubMed]

Morvan, L.

Myara, M.

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single-frequency continuously-tunable compact extended-cavity semiconductor laser,” Opt. Expr. 17, 9503–9508 (2009).
[CrossRef]

Otsuka, K.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scales in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef] [PubMed]

Park, J.-D.

A. McKay, J. M. Dawes, and J.-D. Park, “Polarisation-mode coupling in (100)-cut Nd:YAG,” Opt. Expr. 15, 16342–16347 (2007).
[CrossRef]

Pillet, G.

Pocholle, J.-P.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: Experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

Poezevara, A.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Tech. Lett. 16, 870–872 (2004).
[CrossRef]

Rebut, M.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: Experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

Sagnes, I.

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single-frequency continuously-tunable compact extended-cavity semiconductor laser,” Opt. Expr. 17, 9503–9508 (2009).
[CrossRef]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation-oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[CrossRef] [PubMed]

G. Baili, F. Bretenaker, M. Alouini, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Lightwave Tech. 26, 952–961 (2008).
[CrossRef]

G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise limited operation of a monomode high cavity finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32, 650–652 (2007).
[CrossRef] [PubMed]

San Miguel, M.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995).
[CrossRef] [PubMed]

Sargent, M.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

Schwartz, S.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: Experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

Scully, M. O.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986), pp. 992–999.

Smith, J. S.

J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
[CrossRef]

Talghader, J.

J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
[CrossRef]

-Tehrani, M. M.

M. M. -Tehrani and L. Mandel, “Coherence theory of the ring laser,” Phys. Rev. A 17, 677–693 (1978).
[CrossRef]

Thony, P.

Vallet, M.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 μm,” Opt. Lett. 30, 2418–2420 (2005).
[CrossRef] [PubMed]

M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, “Existence of two coupling constants in microchip lasers,” Opt. Lett. 25, 896–898 (2000).
[CrossRef]

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70, 2070–2072 (1997).
[CrossRef]

L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, M. Brunel, M. Vallet, F. Bretenaker, and A. Le Floch, “Dual-frequency laser at 1.53 μm for generating high-purity optically carried microwave signals up to 20 GHz,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuL5.
[PubMed]

van Exter, M. P.

M. P. van Exter, R. F. M. Hendriks, and J. P. Woerdman, “Physical insight into the polarization dynamics of semiconductor vertical-cavity lasers,” Phys. Rev. A 57, 2080–2090 (1998).
[CrossRef]

Woerdman, J. P.

M. P. van Exter, R. F. M. Hendriks, and J. P. Woerdman, “Physical insight into the polarization dynamics of semiconductor vertical-cavity lasers,” Phys. Rev. A 57, 2080–2090 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70, 2070–2072 (1997).
[CrossRef]

J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
[CrossRef]

Electron. Lett. (1)

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Tech. Lett. 16, 870–872 (2004).
[CrossRef]

J. Lightwave Tech. (1)

G. Baili, F. Bretenaker, M. Alouini, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Lightwave Tech. 26, 952–961 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Expr. (2)

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single-frequency continuously-tunable compact extended-cavity semiconductor laser,” Opt. Expr. 17, 9503–9508 (2009).
[CrossRef]

A. McKay, J. M. Dawes, and J.-D. Park, “Polarisation-mode coupling in (100)-cut Nd:YAG,” Opt. Expr. 15, 16342–16347 (2007).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (6)

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scales in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef] [PubMed]

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: Experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995).
[CrossRef] [PubMed]

M. P. van Exter, R. F. M. Hendriks, and J. P. Woerdman, “Physical insight into the polarization dynamics of semiconductor vertical-cavity lasers,” Phys. Rev. A 57, 2080–2090 (1998).
[CrossRef]

D. Burak, J. V. Moloney, and R. Binder, “Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers,” Phys. Rev. A 61, 053809 (2000).
[CrossRef]

M. M. -Tehrani and L. Mandel, “Coherence theory of the ring laser,” Phys. Rev. A 17, 677–693 (1978).
[CrossRef]

Other (3)

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

A. E. Siegman, Lasers (University Science Books, 1986), pp. 992–999.

L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, M. Brunel, M. Vallet, F. Bretenaker, and A. Le Floch, “Dual-frequency laser at 1.53 μm for generating high-purity optically carried microwave signals up to 20 GHz,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuL5.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. BC: birefringent crystal; HWP: half-wave plate; M: cavity mirror; E: étalon; FPI: Fabry-Perot interferometer. PBS: polarization beam-splitter; BS: beam splitter; L: lens; D: detector; OI: optical isolator; OSA: optical spectrum analyzer.

Fig. 2.
Fig. 2.

Experimental results for a spatial separation d = 20 μm. (a) Evolution of the powers of the ordinary and extraordinary modes when the losses of the ordinary mode are modulated at 227 Hz. (b) Same as (a) when the losses of the extraordinary mode are modulated.

Fig. 3.
Fig. 3.

Same as Fig. 2 for d = 50 μm.

Fig. 4.
Fig. 4.

Evolution of the coupling constant C versus spatial separation d. The filled circles are the measurements and the full lines are given by Eq. (12) with C 0 = 0.8 and w 0 = 41 μm (full red line), C 0 = 0.75 and w 0 = 50 μm (dashed green line), and C 0 = 0.71 and w 0 = 60 μm (dot-dashed blue line)

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d I o d t = I o τ o [ 1 + r o 1 + ( I o + ξ oe I e ) / I sat ] ,
d I e d t = I e τ e [ 1 + r e 1 + ( I e + ξ eo I o ) / I sat ] ,
I o = I sat ( r o 1 ) ξ oe ( r e 1 ) 1 C ,
I e = I sat ( r e 1 ) ξ eo ( r o 1 ) 1 C ,
C = ξ oe ξ eo
ξ eo = I e / r o I o / r o ,
ξ eo = I o / r e I e / r e .
C d = 20 μ m = ξ oe ξ eo = 0.64 .
C d = 50 μ m = ξ oe ξ eo = 0.18 .
C d = 100 μ m 0 .
C = C 0 I 1 x y I 2 x y d x d y ( I 1 2 x y d x d y I 1 2 x y d x d y ) 1 / 2 ,
C = C 0 e d 2 / w 0 2 .

Metrics