Abstract

For the first time to the best of our knowledge a glass-clad optical fiber comprising a crystalline binary III-V semiconductor core has been fabricated. More specifically, a phosphate glass-clad fiber containing an indium antimonide (InSb) core was drawn using a molten core approach. The core was found to be highly crystalline with some oxygen and phosphorus diffusing in from the cladding glass. While optical transmission measurements were unable to be made, most likely due to free carrier absorption associated with the conductivity of the core, this work constitutes a proof-of-concept that optical fibers comprising semiconductor cores of higher crystallographic complexity than previously realized can be drawn using conventional fiber fabrication techniques. Such binary semiconductors may open the door to future fiber-based nonlinear devices.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Pang, X. Zeng, Z. Chen, and T. Wang, “Fabrication and characteristics of silica optical fiber doped with InP nano-semiconducting material,” Opt. Quantum Electron. 39(12-13), 975–981 (2007).
    [CrossRef]
  2. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
    [CrossRef]
  3. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17(10), 8029–8035 (2009).
    [CrossRef] [PubMed]
  4. J. Ballato and E. Snitzer, “Fabrication of Fibers with High Rare-Earth Concentrations for Faraday Isolator Applications,” Appl. Opt. 34(30), 6848–6854 (1995).
    [CrossRef] [PubMed]
  5. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009).
    [CrossRef]
  6. B. Nag, “Melting point of cubic semiconductor compounds,” J. Mater. Sci. Lett. 14(16), 1163–1164 (1995).
    [CrossRef]
  7. F. Cunnell, E. Saker, and J. Edmond, “A Note on the Semiconducting Compound InSb,” Proc. Phys. Soc. B 66(12), 1115–1116 (1953).
    [CrossRef]
  8. H. Yoshinaga and R. Oetjen, “Optical properties of indium antimonide in the region from 20 to 200 microns,” Phys. Rev. 101(2), 526–531 (1956).
    [CrossRef]
  9. S. Fray, F. Johnson, and R. Jones, “Lattice absorption bands in indium antimonide,” Proc. Phys. Soc. 76(6), 939–948 (1960).
    [CrossRef]
  10. R. Sanderson, “Far infrared optical properties of indium antimonide,” J. Phys. Chem. Solids 26(5), 803–810 (1965).
    [CrossRef]
  11. W. Spitzer and H. Fan, “Infrared absorption of indium antimonide,” Phys. Rev. 99(6), 1893–1894 (1955).
    [CrossRef]
  12. C. Patel, R. Slusher, and P. Fleury, “Optical Nonlinearities due to mobile carriers in semiconductors,” Phys. Rev. Lett. 17(19), 1011–1014 (1966).
    [CrossRef]
  13. P. Wolff and G. Pearson, “Theory of optical mixing by mobile carriers in semiconductors,” Phys. Rev. Lett. 17(19), 1015–1017 (1966).
    [CrossRef]
  14. E. Yablonovitch, N. Bloembergen, and J. Wynne, “Dispersion of the nonlinear optical susceptibility in n-InSb,” Phys. Rev. B 3(6), 2060–2062 (1971).
    [CrossRef]
  15. C. McMillen, T. Hawkins, P. Foy, D. Mulwee, J. Kolis, R. Rice, and J. Ballato, “On Crystallographic Orientation in Crystal Core Optical Fibers,” Opt. Mater. (accepted).
  16. C.-C. Lai, K.-Y. Huang, H.-J. Tsai, K.-Y. Hsu, S.-K. Liu, C.-T. Cheng, K.-D. Ji, C.-P. Ke, S.-R. Lin, and S.-L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009).
    [CrossRef] [PubMed]
  17. M. Hársy, T. Gorog, E. Lendvay, and F. Koltai, “Direct synthesis and crystallization of GaSb,” J. Cryst. Growth 53(2), 234–238 (1981).
    [CrossRef]
  18. N. Udayashankar and H. Bhat, “Growth and characterization of indium antimonide and gallium antimonide crystals,” Bull. Mater. Sci. 24(5), 445–453 (2001).
    [CrossRef]
  19. F. Frost, G. Lippold, A. Schindler, and F. Bigl, “Ion beam etching induced structural and electronic modification of InAs and InSb surfaces studied by Raman spectroscopy,” J. Appl. Phys. 85(12), 8378–8385 (1999).
    [CrossRef]
  20. S. Wu, L. Guo, Z. Li, X. Shang, W. Wang, Q. Huang, and J. Zhou, “Effect of the low-temperature buffer thickness on quality of InSb grown on GaAs substrate by molecular beam epitaxy,” J. Cryst. Growth 277(1-4), 21–25 (2005).
    [CrossRef]
  21. J. Menéndez, L. Via, M. Cardona, and E. Anastassakis, “Resonance Raman scattering in InSb: Deformation potentials and interference effects at the E1 gap,” Phys. Rev. B 32(6), 3966–3973 (1985).
    [CrossRef]
  22. W. Kauschke, N. Mestres, and M. Cardona, “Resonant Raman scattering by plasmons and LO phonons near the E1 and E1+Δ1 gaps of GaSb,” Phys. Rev. B 36(14), 7469–7485 (1987).
    [CrossRef]
  23. S. Kurnick and J. Powell, “Optical absorption in pure single crystal InSb at 298° and 78°K,” Phys. Rev. 116(3), 597–604 (1959).
    [CrossRef]

2009 (3)

2008 (1)

2007 (1)

F. Pang, X. Zeng, Z. Chen, and T. Wang, “Fabrication and characteristics of silica optical fiber doped with InP nano-semiconducting material,” Opt. Quantum Electron. 39(12-13), 975–981 (2007).
[CrossRef]

2005 (1)

S. Wu, L. Guo, Z. Li, X. Shang, W. Wang, Q. Huang, and J. Zhou, “Effect of the low-temperature buffer thickness on quality of InSb grown on GaAs substrate by molecular beam epitaxy,” J. Cryst. Growth 277(1-4), 21–25 (2005).
[CrossRef]

2001 (1)

N. Udayashankar and H. Bhat, “Growth and characterization of indium antimonide and gallium antimonide crystals,” Bull. Mater. Sci. 24(5), 445–453 (2001).
[CrossRef]

1999 (1)

F. Frost, G. Lippold, A. Schindler, and F. Bigl, “Ion beam etching induced structural and electronic modification of InAs and InSb surfaces studied by Raman spectroscopy,” J. Appl. Phys. 85(12), 8378–8385 (1999).
[CrossRef]

1995 (2)

1987 (1)

W. Kauschke, N. Mestres, and M. Cardona, “Resonant Raman scattering by plasmons and LO phonons near the E1 and E1+Δ1 gaps of GaSb,” Phys. Rev. B 36(14), 7469–7485 (1987).
[CrossRef]

1985 (1)

J. Menéndez, L. Via, M. Cardona, and E. Anastassakis, “Resonance Raman scattering in InSb: Deformation potentials and interference effects at the E1 gap,” Phys. Rev. B 32(6), 3966–3973 (1985).
[CrossRef]

1981 (1)

M. Hársy, T. Gorog, E. Lendvay, and F. Koltai, “Direct synthesis and crystallization of GaSb,” J. Cryst. Growth 53(2), 234–238 (1981).
[CrossRef]

1971 (1)

E. Yablonovitch, N. Bloembergen, and J. Wynne, “Dispersion of the nonlinear optical susceptibility in n-InSb,” Phys. Rev. B 3(6), 2060–2062 (1971).
[CrossRef]

1966 (2)

C. Patel, R. Slusher, and P. Fleury, “Optical Nonlinearities due to mobile carriers in semiconductors,” Phys. Rev. Lett. 17(19), 1011–1014 (1966).
[CrossRef]

P. Wolff and G. Pearson, “Theory of optical mixing by mobile carriers in semiconductors,” Phys. Rev. Lett. 17(19), 1015–1017 (1966).
[CrossRef]

1965 (1)

R. Sanderson, “Far infrared optical properties of indium antimonide,” J. Phys. Chem. Solids 26(5), 803–810 (1965).
[CrossRef]

1960 (1)

S. Fray, F. Johnson, and R. Jones, “Lattice absorption bands in indium antimonide,” Proc. Phys. Soc. 76(6), 939–948 (1960).
[CrossRef]

1959 (1)

S. Kurnick and J. Powell, “Optical absorption in pure single crystal InSb at 298° and 78°K,” Phys. Rev. 116(3), 597–604 (1959).
[CrossRef]

1956 (1)

H. Yoshinaga and R. Oetjen, “Optical properties of indium antimonide in the region from 20 to 200 microns,” Phys. Rev. 101(2), 526–531 (1956).
[CrossRef]

1955 (1)

W. Spitzer and H. Fan, “Infrared absorption of indium antimonide,” Phys. Rev. 99(6), 1893–1894 (1955).
[CrossRef]

1953 (1)

F. Cunnell, E. Saker, and J. Edmond, “A Note on the Semiconducting Compound InSb,” Proc. Phys. Soc. B 66(12), 1115–1116 (1953).
[CrossRef]

Anastassakis, E.

J. Menéndez, L. Via, M. Cardona, and E. Anastassakis, “Resonance Raman scattering in InSb: Deformation potentials and interference effects at the E1 gap,” Phys. Rev. B 32(6), 3966–3973 (1985).
[CrossRef]

Ballato, J.

Bhat, H.

N. Udayashankar and H. Bhat, “Growth and characterization of indium antimonide and gallium antimonide crystals,” Bull. Mater. Sci. 24(5), 445–453 (2001).
[CrossRef]

Bigl, F.

F. Frost, G. Lippold, A. Schindler, and F. Bigl, “Ion beam etching induced structural and electronic modification of InAs and InSb surfaces studied by Raman spectroscopy,” J. Appl. Phys. 85(12), 8378–8385 (1999).
[CrossRef]

Bloembergen, N.

E. Yablonovitch, N. Bloembergen, and J. Wynne, “Dispersion of the nonlinear optical susceptibility in n-InSb,” Phys. Rev. B 3(6), 2060–2062 (1971).
[CrossRef]

Cardona, M.

W. Kauschke, N. Mestres, and M. Cardona, “Resonant Raman scattering by plasmons and LO phonons near the E1 and E1+Δ1 gaps of GaSb,” Phys. Rev. B 36(14), 7469–7485 (1987).
[CrossRef]

J. Menéndez, L. Via, M. Cardona, and E. Anastassakis, “Resonance Raman scattering in InSb: Deformation potentials and interference effects at the E1 gap,” Phys. Rev. B 32(6), 3966–3973 (1985).
[CrossRef]

Chen, Z.

F. Pang, X. Zeng, Z. Chen, and T. Wang, “Fabrication and characteristics of silica optical fiber doped with InP nano-semiconducting material,” Opt. Quantum Electron. 39(12-13), 975–981 (2007).
[CrossRef]

Cheng, C.-T.

Cunnell, F.

F. Cunnell, E. Saker, and J. Edmond, “A Note on the Semiconducting Compound InSb,” Proc. Phys. Soc. B 66(12), 1115–1116 (1953).
[CrossRef]

Daw, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[CrossRef]

Dubinskii, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Edmond, J.

F. Cunnell, E. Saker, and J. Edmond, “A Note on the Semiconducting Compound InSb,” Proc. Phys. Soc. B 66(12), 1115–1116 (1953).
[CrossRef]

Ellison, M.

Fan, H.

W. Spitzer and H. Fan, “Infrared absorption of indium antimonide,” Phys. Rev. 99(6), 1893–1894 (1955).
[CrossRef]

Fleury, P.

C. Patel, R. Slusher, and P. Fleury, “Optical Nonlinearities due to mobile carriers in semiconductors,” Phys. Rev. Lett. 17(19), 1011–1014 (1966).
[CrossRef]

Foy, P.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17(10), 8029–8035 (2009).
[CrossRef] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[CrossRef]

C. McMillen, T. Hawkins, P. Foy, D. Mulwee, J. Kolis, R. Rice, and J. Ballato, “On Crystallographic Orientation in Crystal Core Optical Fibers,” Opt. Mater. (accepted).

Fray, S.

S. Fray, F. Johnson, and R. Jones, “Lattice absorption bands in indium antimonide,” Proc. Phys. Soc. 76(6), 939–948 (1960).
[CrossRef]

Frost, F.

F. Frost, G. Lippold, A. Schindler, and F. Bigl, “Ion beam etching induced structural and electronic modification of InAs and InSb surfaces studied by Raman spectroscopy,” J. Appl. Phys. 85(12), 8378–8385 (1999).
[CrossRef]

Gorog, T.

M. Hársy, T. Gorog, E. Lendvay, and F. Koltai, “Direct synthesis and crystallization of GaSb,” J. Cryst. Growth 53(2), 234–238 (1981).
[CrossRef]

Guo, L.

S. Wu, L. Guo, Z. Li, X. Shang, W. Wang, Q. Huang, and J. Zhou, “Effect of the low-temperature buffer thickness on quality of InSb grown on GaAs substrate by molecular beam epitaxy,” J. Cryst. Growth 277(1-4), 21–25 (2005).
[CrossRef]

Hársy, M.

M. Hársy, T. Gorog, E. Lendvay, and F. Koltai, “Direct synthesis and crystallization of GaSb,” J. Cryst. Growth 53(2), 234–238 (1981).
[CrossRef]

Hawkins, T.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17(10), 8029–8035 (2009).
[CrossRef] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[CrossRef]

C. McMillen, T. Hawkins, P. Foy, D. Mulwee, J. Kolis, R. Rice, and J. Ballato, “On Crystallographic Orientation in Crystal Core Optical Fibers,” Opt. Mater. (accepted).

Hon, N. K.

Hsu, K.-Y.

Huang, K.-Y.

Huang, Q.

S. Wu, L. Guo, Z. Li, X. Shang, W. Wang, Q. Huang, and J. Zhou, “Effect of the low-temperature buffer thickness on quality of InSb grown on GaAs substrate by molecular beam epitaxy,” J. Cryst. Growth 277(1-4), 21–25 (2005).
[CrossRef]

Huang, S.-L.

Jalali, B.

Ji, K.-D.

Johnson, F.

S. Fray, F. Johnson, and R. Jones, “Lattice absorption bands in indium antimonide,” Proc. Phys. Soc. 76(6), 939–948 (1960).
[CrossRef]

Jones, R.

S. Fray, F. Johnson, and R. Jones, “Lattice absorption bands in indium antimonide,” Proc. Phys. Soc. 76(6), 939–948 (1960).
[CrossRef]

Kauschke, W.

W. Kauschke, N. Mestres, and M. Cardona, “Resonant Raman scattering by plasmons and LO phonons near the E1 and E1+Δ1 gaps of GaSb,” Phys. Rev. B 36(14), 7469–7485 (1987).
[CrossRef]

Ke, C.-P.

Kokuoz, B.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[CrossRef]

Kolis, J.

C. McMillen, T. Hawkins, P. Foy, D. Mulwee, J. Kolis, R. Rice, and J. Ballato, “On Crystallographic Orientation in Crystal Core Optical Fibers,” Opt. Mater. (accepted).

Koltai, F.

M. Hársy, T. Gorog, E. Lendvay, and F. Koltai, “Direct synthesis and crystallization of GaSb,” J. Cryst. Growth 53(2), 234–238 (1981).
[CrossRef]

Kurnick, S.

S. Kurnick and J. Powell, “Optical absorption in pure single crystal InSb at 298° and 78°K,” Phys. Rev. 116(3), 597–604 (1959).
[CrossRef]

Lai, C.-C.

Lendvay, E.

M. Hársy, T. Gorog, E. Lendvay, and F. Koltai, “Direct synthesis and crystallization of GaSb,” J. Cryst. Growth 53(2), 234–238 (1981).
[CrossRef]

Li, Z.

S. Wu, L. Guo, Z. Li, X. Shang, W. Wang, Q. Huang, and J. Zhou, “Effect of the low-temperature buffer thickness on quality of InSb grown on GaAs substrate by molecular beam epitaxy,” J. Cryst. Growth 277(1-4), 21–25 (2005).
[CrossRef]

Lin, S.-R.

Lippold, G.

F. Frost, G. Lippold, A. Schindler, and F. Bigl, “Ion beam etching induced structural and electronic modification of InAs and InSb surfaces studied by Raman spectroscopy,” J. Appl. Phys. 85(12), 8378–8385 (1999).
[CrossRef]

Liu, S.-K.

Matthewson, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

McMillen, C.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17(10), 8029–8035 (2009).
[CrossRef] [PubMed]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[CrossRef]

C. McMillen, T. Hawkins, P. Foy, D. Mulwee, J. Kolis, R. Rice, and J. Ballato, “On Crystallographic Orientation in Crystal Core Optical Fibers,” Opt. Mater. (accepted).

Menéndez, J.

J. Menéndez, L. Via, M. Cardona, and E. Anastassakis, “Resonance Raman scattering in InSb: Deformation potentials and interference effects at the E1 gap,” Phys. Rev. B 32(6), 3966–3973 (1985).
[CrossRef]

Mestres, N.

W. Kauschke, N. Mestres, and M. Cardona, “Resonant Raman scattering by plasmons and LO phonons near the E1 and E1+Δ1 gaps of GaSb,” Phys. Rev. B 36(14), 7469–7485 (1987).
[CrossRef]

Mulwee, D.

C. McMillen, T. Hawkins, P. Foy, D. Mulwee, J. Kolis, R. Rice, and J. Ballato, “On Crystallographic Orientation in Crystal Core Optical Fibers,” Opt. Mater. (accepted).

Nag, B.

B. Nag, “Melting point of cubic semiconductor compounds,” J. Mater. Sci. Lett. 14(16), 1163–1164 (1995).
[CrossRef]

Oetjen, R.

H. Yoshinaga and R. Oetjen, “Optical properties of indium antimonide in the region from 20 to 200 microns,” Phys. Rev. 101(2), 526–531 (1956).
[CrossRef]

Pang, F.

F. Pang, X. Zeng, Z. Chen, and T. Wang, “Fabrication and characteristics of silica optical fiber doped with InP nano-semiconducting material,” Opt. Quantum Electron. 39(12-13), 975–981 (2007).
[CrossRef]

Patel, C.

C. Patel, R. Slusher, and P. Fleury, “Optical Nonlinearities due to mobile carriers in semiconductors,” Phys. Rev. Lett. 17(19), 1011–1014 (1966).
[CrossRef]

Pearson, G.

P. Wolff and G. Pearson, “Theory of optical mixing by mobile carriers in semiconductors,” Phys. Rev. Lett. 17(19), 1015–1017 (1966).
[CrossRef]

Powell, J.

S. Kurnick and J. Powell, “Optical absorption in pure single crystal InSb at 298° and 78°K,” Phys. Rev. 116(3), 597–604 (1959).
[CrossRef]

Powers, D. R.

Rao, A. M.

Reppert, J.

Rice, R.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17(10), 8029–8035 (2009).
[CrossRef] [PubMed]

C. McMillen, T. Hawkins, P. Foy, D. Mulwee, J. Kolis, R. Rice, and J. Ballato, “On Crystallographic Orientation in Crystal Core Optical Fibers,” Opt. Mater. (accepted).

Rice, R. R.

Saker, E.

F. Cunnell, E. Saker, and J. Edmond, “A Note on the Semiconducting Compound InSb,” Proc. Phys. Soc. B 66(12), 1115–1116 (1953).
[CrossRef]

Sanamyan, T.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Sanderson, R.

R. Sanderson, “Far infrared optical properties of indium antimonide,” J. Phys. Chem. Solids 26(5), 803–810 (1965).
[CrossRef]

Schindler, A.

F. Frost, G. Lippold, A. Schindler, and F. Bigl, “Ion beam etching induced structural and electronic modification of InAs and InSb surfaces studied by Raman spectroscopy,” J. Appl. Phys. 85(12), 8378–8385 (1999).
[CrossRef]

Shang, X.

S. Wu, L. Guo, Z. Li, X. Shang, W. Wang, Q. Huang, and J. Zhou, “Effect of the low-temperature buffer thickness on quality of InSb grown on GaAs substrate by molecular beam epitaxy,” J. Cryst. Growth 277(1-4), 21–25 (2005).
[CrossRef]

Sharma, S. R.

Shori, R.

Slusher, R.

C. Patel, R. Slusher, and P. Fleury, “Optical Nonlinearities due to mobile carriers in semiconductors,” Phys. Rev. Lett. 17(19), 1011–1014 (1966).
[CrossRef]

Snitzer, E.

Spitzer, W.

W. Spitzer and H. Fan, “Infrared absorption of indium antimonide,” Phys. Rev. 99(6), 1893–1894 (1955).
[CrossRef]

Stafsudd, O.

Stolen, R.

Su, Z.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Tritt, T.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Tsai, H.-J.

Udayashankar, N.

N. Udayashankar and H. Bhat, “Growth and characterization of indium antimonide and gallium antimonide crystals,” Bull. Mater. Sci. 24(5), 445–453 (2001).
[CrossRef]

Via, L.

J. Menéndez, L. Via, M. Cardona, and E. Anastassakis, “Resonance Raman scattering in InSb: Deformation potentials and interference effects at the E1 gap,” Phys. Rev. B 32(6), 3966–3973 (1985).
[CrossRef]

Wang, T.

F. Pang, X. Zeng, Z. Chen, and T. Wang, “Fabrication and characteristics of silica optical fiber doped with InP nano-semiconducting material,” Opt. Quantum Electron. 39(12-13), 975–981 (2007).
[CrossRef]

Wang, W.

S. Wu, L. Guo, Z. Li, X. Shang, W. Wang, Q. Huang, and J. Zhou, “Effect of the low-temperature buffer thickness on quality of InSb grown on GaAs substrate by molecular beam epitaxy,” J. Cryst. Growth 277(1-4), 21–25 (2005).
[CrossRef]

Wolff, P.

P. Wolff and G. Pearson, “Theory of optical mixing by mobile carriers in semiconductors,” Phys. Rev. Lett. 17(19), 1015–1017 (1966).
[CrossRef]

Wu, S.

S. Wu, L. Guo, Z. Li, X. Shang, W. Wang, Q. Huang, and J. Zhou, “Effect of the low-temperature buffer thickness on quality of InSb grown on GaAs substrate by molecular beam epitaxy,” J. Cryst. Growth 277(1-4), 21–25 (2005).
[CrossRef]

Wynne, J.

E. Yablonovitch, N. Bloembergen, and J. Wynne, “Dispersion of the nonlinear optical susceptibility in n-InSb,” Phys. Rev. B 3(6), 2060–2062 (1971).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, N. Bloembergen, and J. Wynne, “Dispersion of the nonlinear optical susceptibility in n-InSb,” Phys. Rev. B 3(6), 2060–2062 (1971).
[CrossRef]

Yazgan-Kokuoz, B.

Yoshinaga, H.

H. Yoshinaga and R. Oetjen, “Optical properties of indium antimonide in the region from 20 to 200 microns,” Phys. Rev. 101(2), 526–531 (1956).
[CrossRef]

Zeng, X.

F. Pang, X. Zeng, Z. Chen, and T. Wang, “Fabrication and characteristics of silica optical fiber doped with InP nano-semiconducting material,” Opt. Quantum Electron. 39(12-13), 975–981 (2007).
[CrossRef]

Zhang, J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Zhou, J.

S. Wu, L. Guo, Z. Li, X. Shang, W. Wang, Q. Huang, and J. Zhou, “Effect of the low-temperature buffer thickness on quality of InSb grown on GaAs substrate by molecular beam epitaxy,” J. Cryst. Growth 277(1-4), 21–25 (2005).
[CrossRef]

Appl. Opt. (1)

Bull. Mater. Sci. (1)

N. Udayashankar and H. Bhat, “Growth and characterization of indium antimonide and gallium antimonide crystals,” Bull. Mater. Sci. 24(5), 445–453 (2001).
[CrossRef]

J. Appl. Phys. (2)

F. Frost, G. Lippold, A. Schindler, and F. Bigl, “Ion beam etching induced structural and electronic modification of InAs and InSb surfaces studied by Raman spectroscopy,” J. Appl. Phys. 85(12), 8378–8385 (1999).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. Matthewson, “On the Fabrication of All-Glass Optical Fibers from Crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

J. Cryst. Growth (2)

S. Wu, L. Guo, Z. Li, X. Shang, W. Wang, Q. Huang, and J. Zhou, “Effect of the low-temperature buffer thickness on quality of InSb grown on GaAs substrate by molecular beam epitaxy,” J. Cryst. Growth 277(1-4), 21–25 (2005).
[CrossRef]

M. Hársy, T. Gorog, E. Lendvay, and F. Koltai, “Direct synthesis and crystallization of GaSb,” J. Cryst. Growth 53(2), 234–238 (1981).
[CrossRef]

J. Mater. Sci. Lett. (1)

B. Nag, “Melting point of cubic semiconductor compounds,” J. Mater. Sci. Lett. 14(16), 1163–1164 (1995).
[CrossRef]

J. Phys. Chem. Solids (1)

R. Sanderson, “Far infrared optical properties of indium antimonide,” J. Phys. Chem. Solids 26(5), 803–810 (1965).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

C. McMillen, T. Hawkins, P. Foy, D. Mulwee, J. Kolis, R. Rice, and J. Ballato, “On Crystallographic Orientation in Crystal Core Optical Fibers,” Opt. Mater. (accepted).

Opt. Quantum Electron. (1)

F. Pang, X. Zeng, Z. Chen, and T. Wang, “Fabrication and characteristics of silica optical fiber doped with InP nano-semiconducting material,” Opt. Quantum Electron. 39(12-13), 975–981 (2007).
[CrossRef]

Phys. Rev. (3)

W. Spitzer and H. Fan, “Infrared absorption of indium antimonide,” Phys. Rev. 99(6), 1893–1894 (1955).
[CrossRef]

H. Yoshinaga and R. Oetjen, “Optical properties of indium antimonide in the region from 20 to 200 microns,” Phys. Rev. 101(2), 526–531 (1956).
[CrossRef]

S. Kurnick and J. Powell, “Optical absorption in pure single crystal InSb at 298° and 78°K,” Phys. Rev. 116(3), 597–604 (1959).
[CrossRef]

Phys. Rev. B (3)

J. Menéndez, L. Via, M. Cardona, and E. Anastassakis, “Resonance Raman scattering in InSb: Deformation potentials and interference effects at the E1 gap,” Phys. Rev. B 32(6), 3966–3973 (1985).
[CrossRef]

W. Kauschke, N. Mestres, and M. Cardona, “Resonant Raman scattering by plasmons and LO phonons near the E1 and E1+Δ1 gaps of GaSb,” Phys. Rev. B 36(14), 7469–7485 (1987).
[CrossRef]

E. Yablonovitch, N. Bloembergen, and J. Wynne, “Dispersion of the nonlinear optical susceptibility in n-InSb,” Phys. Rev. B 3(6), 2060–2062 (1971).
[CrossRef]

Phys. Rev. Lett. (2)

C. Patel, R. Slusher, and P. Fleury, “Optical Nonlinearities due to mobile carriers in semiconductors,” Phys. Rev. Lett. 17(19), 1011–1014 (1966).
[CrossRef]

P. Wolff and G. Pearson, “Theory of optical mixing by mobile carriers in semiconductors,” Phys. Rev. Lett. 17(19), 1015–1017 (1966).
[CrossRef]

Proc. Phys. Soc. (1)

S. Fray, F. Johnson, and R. Jones, “Lattice absorption bands in indium antimonide,” Proc. Phys. Soc. 76(6), 939–948 (1960).
[CrossRef]

Proc. Phys. Soc. B (1)

F. Cunnell, E. Saker, and J. Edmond, “A Note on the Semiconducting Compound InSb,” Proc. Phys. Soc. B 66(12), 1115–1116 (1953).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Electron micrograph image of phosphate glass clad, InSb core optical fiber.

Fig. 2
Fig. 2

X-ray diffraction spectra for InSb starting material and fiber core. Crystallographic indices also are shown.

Fig. 3
Fig. 3

Elemental profile of selected core and clad constituents as a function of distance from the core/clad interface. Minor cladding glass constituents have been omitted for clarity.

Fig. 4
Fig. 4

Raman scattering spectra from InSb starting material and the fiber core of the drawn optical fiber. The black curves are the de-convoluted best-fit to the LO and TO modes. The dashed trace is shown magnified and represents the L mode discussed in the text.

Fig. 5
Fig. 5

Fourier transform infrared (FTIR) spectra through the as-purchased InSb wafer.

Metrics