Abstract

Ridge nanoscale aperture antennas have been shown to be a high transmission nanoscale light source. They provide a small, polarization-dependent near-field optical spot with much higher transmission efficiency than circularly-shaped apertures with similar field confinement. This provides significant motivations to understand the electromagnetic fields in the immediate proximity to the apertures. This paper describes an experimental three-dimensional optical near-field mapping of a bowtie nano-aperture. The measurements are performed using a home-built near-field scanning optical microscopy (NSOM) system. An aluminum coated Si3N4 probe with a 150 nm hole at the tip is used to collect optical signals. Both contact and constant-height scan (CHS) modes are used to measure the optical intensity at different longitudinal distances. A force-displacement curve is used to determine the tip-sample separation distance allowing the optical intensities to be mapped at distances as small as 50 nm and up to micrometer level. The experimental results also demonstrate the polarization dependence of the transmission through the bowtie aperture. Numerical simulations are also performed to compute the aperture’s electromagnetic near-field distribution and are shown to agree with the experimental results.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Rao, L. Hesselink, and J. S. Harris, “High transmission through ridge nano-apertures on Vertical-Cavity Surface-Emitting Lasers,” Opt. Express 15(16), 10427–10438 (2007).
    [CrossRef] [PubMed]
  2. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
    [CrossRef] [PubMed]
  3. E. Jin and X. Xu, “Obtaining subwavelength optical spots using nanoscale ridge apertures,” J. Heat Transfer 129(1), 37 (2007).
    [CrossRef]
  4. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
    [CrossRef] [PubMed]
  5. K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743 (2004).
    [CrossRef]
  6. S. Park and J. Won Hahn, “Plasmonic data storage medium with metallic nano-aperture array embedded in dielectric material,” Opt. Express 17(22), 20203–20210 (2009).
    [CrossRef] [PubMed]
  7. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics 3, 654–657 (2009).
    [CrossRef]
  8. E. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
    [CrossRef]
  9. L. Zhou, Q. Gan, F. J. Bartoli, and V. Dierolf, “Direct near-field optical imaging of UV bowtie nanoantennas,” Opt. Express 17(22), 20301–20306 (2009).
    [CrossRef] [PubMed]
  10. E. Lee and J. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
    [CrossRef] [PubMed]
  11. L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(Pt 3), 483–489 (2008).
    [CrossRef] [PubMed]
  12. E. Betzig, P. Finn, and J. Weiner, “Combined shear force and near field scanning optical microscopy,” Appl. Phys. Lett. 60(20), 2484 (1992).
    [CrossRef]
  13. R. Toledo-Crow, P. Yang, Y. Chen, and M. Vaez Iravani, “Near field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60(24), 2957 (1992).
    [CrossRef]
  14. K. Karrai and R. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842 (1995).
    [CrossRef]
  15. D. Tsai and Y. Lu, “Tapping-mode tuning fork force sensing for near-field scanning optical microscopy,” Appl. Phys. Lett. 73(19), 2724 (1998).
    [CrossRef]
  16. B. Hecht, H. Bielefeldt, Y. Inouye, D. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492 (1997).
    [CrossRef]
  17. C. Jordan, S. Stranick, L. Richter, and R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785 (1999).
    [CrossRef]
  18. L. Aigouy, Y. De Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83(1), 147–149 (2003).
    [CrossRef]
  19. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
    [CrossRef] [PubMed]
  20. B. Gady, D. Schleef, R. Reifenberger, and D. S. Rimai, “The Interaction between Micrometer-size Particles and Flat Substrates: A Quantitative Study of Jump-to-Contact,” J. Adhes. 67(1), 291–305 (1998).
    [CrossRef]
  21. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
    [CrossRef]
  22. L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
    [CrossRef]

2009 (4)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics 3, 654–657 (2009).
[CrossRef]

S. Park and J. Won Hahn, “Plasmonic data storage medium with metallic nano-aperture array embedded in dielectric material,” Opt. Express 17(22), 20203–20210 (2009).
[CrossRef] [PubMed]

L. Zhou, Q. Gan, F. J. Bartoli, and V. Dierolf, “Direct near-field optical imaging of UV bowtie nanoantennas,” Opt. Express 17(22), 20301–20306 (2009).
[CrossRef] [PubMed]

2008 (2)

E. Lee and J. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
[CrossRef] [PubMed]

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(Pt 3), 483–489 (2008).
[CrossRef] [PubMed]

2007 (4)

E. Jin and X. Xu, “Obtaining subwavelength optical spots using nanoscale ridge apertures,” J. Heat Transfer 129(1), 37 (2007).
[CrossRef]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[CrossRef]

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Z. Rao, L. Hesselink, and J. S. Harris, “High transmission through ridge nano-apertures on Vertical-Cavity Surface-Emitting Lasers,” Opt. Express 15(16), 10427–10438 (2007).
[CrossRef] [PubMed]

2006 (3)

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

E. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[CrossRef]

2004 (1)

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743 (2004).
[CrossRef]

2003 (1)

L. Aigouy, Y. De Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83(1), 147–149 (2003).
[CrossRef]

1999 (1)

C. Jordan, S. Stranick, L. Richter, and R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785 (1999).
[CrossRef]

1998 (2)

D. Tsai and Y. Lu, “Tapping-mode tuning fork force sensing for near-field scanning optical microscopy,” Appl. Phys. Lett. 73(19), 2724 (1998).
[CrossRef]

B. Gady, D. Schleef, R. Reifenberger, and D. S. Rimai, “The Interaction between Micrometer-size Particles and Flat Substrates: A Quantitative Study of Jump-to-Contact,” J. Adhes. 67(1), 291–305 (1998).
[CrossRef]

1997 (1)

B. Hecht, H. Bielefeldt, Y. Inouye, D. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492 (1997).
[CrossRef]

1995 (1)

K. Karrai and R. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842 (1995).
[CrossRef]

1992 (2)

E. Betzig, P. Finn, and J. Weiner, “Combined shear force and near field scanning optical microscopy,” Appl. Phys. Lett. 60(20), 2484 (1992).
[CrossRef]

R. Toledo-Crow, P. Yang, Y. Chen, and M. Vaez Iravani, “Near field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60(24), 2957 (1992).
[CrossRef]

Aigouy, L.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

L. Aigouy, Y. De Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83(1), 147–149 (2003).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics 3, 654–657 (2009).
[CrossRef]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Bartoli, F. J.

Betzig, E.

E. Betzig, P. Finn, and J. Weiner, “Combined shear force and near field scanning optical microscopy,” Appl. Phys. Lett. 60(20), 2484 (1992).
[CrossRef]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, Y. Inouye, D. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492 (1997).
[CrossRef]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Cavanagh, R.

C. Jordan, S. Stranick, L. Richter, and R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785 (1999).
[CrossRef]

Challener, W.

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743 (2004).
[CrossRef]

Chen, Y.

R. Toledo-Crow, P. Yang, Y. Chen, and M. Vaez Iravani, “Near field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60(24), 2957 (1992).
[CrossRef]

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

De Wilde, Y.

L. Aigouy, Y. De Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83(1), 147–149 (2003).
[CrossRef]

Dierolf, V.

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics 3, 654–657 (2009).
[CrossRef]

Finn, P.

E. Betzig, P. Finn, and J. Weiner, “Combined shear force and near field scanning optical microscopy,” Appl. Phys. Lett. 60(20), 2484 (1992).
[CrossRef]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Gady, B.

B. Gady, D. Schleef, R. Reifenberger, and D. S. Rimai, “The Interaction between Micrometer-size Particles and Flat Substrates: A Quantitative Study of Jump-to-Contact,” J. Adhes. 67(1), 291–305 (1998).
[CrossRef]

Gan, Q.

Grober, R.

K. Karrai and R. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842 (1995).
[CrossRef]

Hahn, J.

E. Lee and J. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
[CrossRef] [PubMed]

Harris, J. S.

Hecht, B.

B. Hecht, H. Bielefeldt, Y. Inouye, D. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492 (1997).
[CrossRef]

Hesselink, L.

Hugonin, J. P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Inouye, Y.

B. Hecht, H. Bielefeldt, Y. Inouye, D. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492 (1997).
[CrossRef]

Jin, E.

E. Jin and X. Xu, “Obtaining subwavelength optical spots using nanoscale ridge apertures,” J. Heat Transfer 129(1), 37 (2007).
[CrossRef]

E. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[CrossRef]

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

Jordan, C.

C. Jordan, S. Stranick, L. Richter, and R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785 (1999).
[CrossRef]

Julié, G.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Karrai, K.

K. Karrai and R. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842 (1995).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics 3, 654–657 (2009).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Lalanne, P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Lee, E.

E. Lee and J. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
[CrossRef] [PubMed]

Lu, Y.

D. Tsai and Y. Lu, “Tapping-mode tuning fork force sensing for near-field scanning optical microscopy,” Appl. Phys. Lett. 73(19), 2724 (1998).
[CrossRef]

Mathet, V.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Moerner, W.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics 3, 654–657 (2009).
[CrossRef]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Mortier, M.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

L. Aigouy, Y. De Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83(1), 147–149 (2003).
[CrossRef]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics 3, 654–657 (2009).
[CrossRef]

Novotny, L.

B. Hecht, H. Bielefeldt, Y. Inouye, D. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492 (1997).
[CrossRef]

Park, S.

Peng, C.

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743 (2004).
[CrossRef]

Pohl, D.

B. Hecht, H. Bielefeldt, Y. Inouye, D. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492 (1997).
[CrossRef]

Rao, Z.

Reifenberger, R.

B. Gady, D. Schleef, R. Reifenberger, and D. S. Rimai, “The Interaction between Micrometer-size Particles and Flat Substrates: A Quantitative Study of Jump-to-Contact,” J. Adhes. 67(1), 291–305 (1998).
[CrossRef]

Richter, L.

C. Jordan, S. Stranick, L. Richter, and R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785 (1999).
[CrossRef]

Rimai, D. S.

B. Gady, D. Schleef, R. Reifenberger, and D. S. Rimai, “The Interaction between Micrometer-size Particles and Flat Substrates: A Quantitative Study of Jump-to-Contact,” J. Adhes. 67(1), 291–305 (1998).
[CrossRef]

Schleef, D.

B. Gady, D. Schleef, R. Reifenberger, and D. S. Rimai, “The Interaction between Micrometer-size Particles and Flat Substrates: A Quantitative Study of Jump-to-Contact,” J. Adhes. 67(1), 291–305 (1998).
[CrossRef]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Sendur, K.

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743 (2004).
[CrossRef]

Stranick, S.

C. Jordan, S. Stranick, L. Richter, and R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785 (1999).
[CrossRef]

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Toledo-Crow, R.

R. Toledo-Crow, P. Yang, Y. Chen, and M. Vaez Iravani, “Near field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60(24), 2957 (1992).
[CrossRef]

Tsai, D.

D. Tsai and Y. Lu, “Tapping-mode tuning fork force sensing for near-field scanning optical microscopy,” Appl. Phys. Lett. 73(19), 2724 (1998).
[CrossRef]

Uppuluri, S. M.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

Vaez Iravani, M.

R. Toledo-Crow, P. Yang, Y. Chen, and M. Vaez Iravani, “Near field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60(24), 2957 (1992).
[CrossRef]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Wang, L.

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(Pt 3), 483–489 (2008).
[CrossRef] [PubMed]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

Weiner, J.

E. Betzig, P. Finn, and J. Weiner, “Combined shear force and near field scanning optical microscopy,” Appl. Phys. Lett. 60(20), 2484 (1992).
[CrossRef]

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Won Hahn, J.

Xu, X.

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(Pt 3), 483–489 (2008).
[CrossRef] [PubMed]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[CrossRef]

E. Jin and X. Xu, “Obtaining subwavelength optical spots using nanoscale ridge apertures,” J. Heat Transfer 129(1), 37 (2007).
[CrossRef]

E. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

Yang, P.

R. Toledo-Crow, P. Yang, Y. Chen, and M. Vaez Iravani, “Near field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60(24), 2957 (1992).
[CrossRef]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics 3, 654–657 (2009).
[CrossRef]

Zhou, L.

Appl. Phys. Lett. (7)

E. Betzig, P. Finn, and J. Weiner, “Combined shear force and near field scanning optical microscopy,” Appl. Phys. Lett. 60(20), 2484 (1992).
[CrossRef]

R. Toledo-Crow, P. Yang, Y. Chen, and M. Vaez Iravani, “Near field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60(24), 2957 (1992).
[CrossRef]

K. Karrai and R. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842 (1995).
[CrossRef]

D. Tsai and Y. Lu, “Tapping-mode tuning fork force sensing for near-field scanning optical microscopy,” Appl. Phys. Lett. 73(19), 2724 (1998).
[CrossRef]

L. Aigouy, Y. De Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83(1), 147–149 (2003).
[CrossRef]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[CrossRef]

E. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[CrossRef]

J. Adhes. (1)

B. Gady, D. Schleef, R. Reifenberger, and D. S. Rimai, “The Interaction between Micrometer-size Particles and Flat Substrates: A Quantitative Study of Jump-to-Contact,” J. Adhes. 67(1), 291–305 (1998).
[CrossRef]

J. Appl. Phys. (3)

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743 (2004).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492 (1997).
[CrossRef]

C. Jordan, S. Stranick, L. Richter, and R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785 (1999).
[CrossRef]

J. Heat Transfer (1)

E. Jin and X. Xu, “Obtaining subwavelength optical spots using nanoscale ridge apertures,” J. Heat Transfer 129(1), 37 (2007).
[CrossRef]

J. Microsc. (1)

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(Pt 3), 483–489 (2008).
[CrossRef] [PubMed]

Nano Lett. (3)

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

E. Lee and J. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
[CrossRef] [PubMed]

Nature Photonics (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics 3, 654–657 (2009).
[CrossRef]

Opt. Express (3)

Phys. Rev. Lett. (1)

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of home-made NSOM system. The illumination source is a λ = 457 nm argon-ion laser. The feedback of NSOM head is based on the optical beam deflection technique. The NSOM probe is an aluminum coated Si3N4 probe with a 150 nm hole at the tip. The pinhole has a size of 100 micron.

Fig. 2
Fig. 2

(A) SEM image of the bowtie nano-aperture on a 150nm coated Al film. The aperture has a size of 260 nm × 260 nm and has a gap of 62 nm. (B) SEM image of the NSOM probe. The hole on the tip is around 150 nm in diameter. (C) Simulation model of bowtie nano- antenna. Its dimensions used in simulation are fit to SEM image (A).

Fig. 3
Fig. 3

Computed electric field distribution of bowtie aperture under x-polarized illumination (A, B) and y-polarized illumination (C, D). The aperture has a size of 260 nm × 260 nm and a gap of about 62 nm at the fused silica/aluminum interface and 134 nm at the top of the film. The illumination is a λ = 457 nm plane-wave.

Fig. 6
Fig. 6

NSOM signals and the F-z curve at the B position in Fig. 4(B). Data are collected at different directions. Tip approach direction: green and red; tip retraction direction: black and blue.

Fig. 4
Fig. 4

Near-field intensity distribution of bowtie aperture measured in the contact mode. The scan area is 1μm × 1μm. The illumination laser is polarized along the x-direction (A) and y-direction (B). Note the different intensity scales in the two figures.

Fig. 5
Fig. 5

NSOM signals and the F-z curve at the A position in Fig. 4(A). Data are collected at different directions. Tip approach direction: green and red; tip retraction direction: black and blue.

Fig. 7
Fig. 7

Constant-height scanning NSOM images at difference tip-sample distances: 50 nm, 75 nm, 100 nm, 125 nm, 150 nm and 200 nm in A - F, respectively. The laser polarization is in the x-direction.

Fig. 8
Fig. 8

Constant-height scanning NSOM images at different tip-sample distances: 50 nm, 75 nm, 100 nm, 125 nm, 150 nm and 200 nm in A - F, respectively. The laser polarization is in the y-direction.

Fig. 9
Fig. 9

Experimental (A,C) and theoretical (B,D) intensity distribution along sections 1 and 2 of Fig. 4(A), respectively, at different heights for laser polarization in the x-direction.

Fig. 10
Fig. 10

Experimental (A,C) and theoretical (B,D) intensity distribution along sections 3 and 4 in Fig. 4(B), respectively, at different heights for laser polarization in the y-direction.

Tables (1)

Tables Icon

Table 1 Measured FWHM of near-field spot at different heights a

Metrics