Abstract

Nano-optical transducers have been utilized in existing an emerging applications due to their ability to obtain small optical spots, large transmission efficiency, and narrow and adjustable spectral response. In emerging nano-optical applications, such as heat assisted magnetic recording (HAMR), these features are not sufficient. For example, in HAMR a transducer should also satisfy additional requirements, such as mass-production and integrability with other device components. In this study, the basic principles of Maxwell’s equations and image theory for good metals are utilized to design a perpendicular oriented single-pole nano-optical transducer, which can be integrated into the manufacturing technologies of current hard disk drive heads. The perpendicular oriented single-pole nano-optical transducer is investigated using 3-D finite element methods Gold transducers are investigated for both longitudinal and perpendicular orientations. The optical intensity profiles and spot sizes of longitudinal and perpendicular oriented transducers are compared for various fly heights. It is shown that a perpendicular ridge waveguide provides localized optical spots with intensities comparable to longitudinal transducers.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
    [CrossRef]
  2. P. L. Lu and S. H. Charap, "Magnetic viscosity in high-density recording," J. Appl. Phys. 75,5768-5770 (1994).
    [CrossRef]
  3. D. Weller and A. Moser, "Thermal effect limits in ultrahigh density magnetic recording," IEEE Trans. Magn. 35,4423-4439 (1999).
    [CrossRef]
  4. S. I. Iwasaki and J. Hokkyo, Perpendicular Magnetic Recording (IOS, Amsterdam, 1991).
  5. M. Mallary, A. Torabi, and M. Benakli, "One terabit per square inch perpendicular recording conceptual design," IEEE Trans. Magn. 38,1719-1724 (2002).
    [CrossRef]
  6. R. Wood, "Feasibility of Magnetic Recording at 1 Terabit per Square Inch," IEEE Trans. Magn. 36,36-42 (2000).
    [CrossRef]
  7. T. W. McDaniel, W. A. Challener, and K. Sendur, "Issues in heat-assisted perpendicular recording," IEEE Trans. Magn. 39,1972-1979 (2003).
    [CrossRef]
  8. M. H. Kryder, E. C. Gage, T.W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, "Heat Assisted Magnetic Recording," Proc. IEEE 96,1810-1835 (2008).
    [CrossRef]
  9. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
    [CrossRef]
  10. L. Pan and D. B. Bogy, "Heat Assisted Magnetic Recording," Nature Photon. 3,189-190 (2009).
    [CrossRef]
  11. K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94,043901 (2005).
    [CrossRef] [PubMed]
  12. W. Challener, E. Gage, A. Itagi, and C. Peng, "Optical transducers for near-field recording," Jpn. J. Appl. Phys. 94,6632-6642 (2006).
    [CrossRef]
  13. K. Sendur and W. Challener, "Patterned medium for heat assisted magnetic recording," Appl. Phys. Lett. 94,032503 (2009).
    [CrossRef]
  14. X. Shi, R. Thornton, and L. Hesselink, "Nano-aperture with 1000x power throughput enhancement for very small aperture laser system (VSAL)," Proc. SPIE Int. Soc. Opt. Eng. 4342, 320 (2002).
  15. X. Shi and L. Hesselink, "Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage," Jpn. J. Appl. Phys. 41,1632-1635 (2002).
    [CrossRef]
  16. A. V. Itagi, D. Stancil, J. Bain, and T. Schlesinger, "Ridge waveguide as a near-field optical source," Appl. Phys. Lett. 83,4474-4476 (2003).
    [CrossRef]
  17. K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near-field aperture for high density data storage," J. Appl. Phys. 96,2743-2752 (2004).
    [CrossRef]
  18. K. Sendur and P. Jones, "Effect of fly height and refractive index on the transmission efficiency of near-field optical transducers," Appl. Phys. Lett. 88,091110 (2006).
    [CrossRef]
  19. E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, CA, 1998).
  20. J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, NY, 1990).
  21. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
    [CrossRef] [PubMed]
  22. L. Novotny and B. Hecht, Principles of Nano-Optics, Chapter 3 (Cambridge University Press, New York, NY, 2006)
  23. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91,233901 (2003).
    [CrossRef] [PubMed]
  24. M. J. Snadden, A. S. Bell, R. B. M. Clarke, E. Riis, and D. H. McIntyre, "Doughnut mode magneto-optical trap," J. Opt. Soc. Am. B 14, 544-552 (1997).
    [CrossRef]
  25. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990).
    [CrossRef] [PubMed]
  26. W. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature Planar Solid Immersion Mirror with Focused Spot Less Than a Quarter Wavelength," Opt. Express 13, 7189-7197 (2005).
    [CrossRef] [PubMed]
  27. A. Hartschuh, N. Anderson, and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210234-240 (2003).
    [CrossRef] [PubMed]

2009 (3)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

L. Pan and D. B. Bogy, "Heat Assisted Magnetic Recording," Nature Photon. 3,189-190 (2009).
[CrossRef]

K. Sendur and W. Challener, "Patterned medium for heat assisted magnetic recording," Appl. Phys. Lett. 94,032503 (2009).
[CrossRef]

2008 (1)

M. H. Kryder, E. C. Gage, T.W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, "Heat Assisted Magnetic Recording," Proc. IEEE 96,1810-1835 (2008).
[CrossRef]

2006 (3)

W. Challener, E. Gage, A. Itagi, and C. Peng, "Optical transducers for near-field recording," Jpn. J. Appl. Phys. 94,6632-6642 (2006).
[CrossRef]

K. Sendur and P. Jones, "Effect of fly height and refractive index on the transmission efficiency of near-field optical transducers," Appl. Phys. Lett. 88,091110 (2006).
[CrossRef]

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

2005 (2)

K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94,043901 (2005).
[CrossRef] [PubMed]

W. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature Planar Solid Immersion Mirror with Focused Spot Less Than a Quarter Wavelength," Opt. Express 13, 7189-7197 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near-field aperture for high density data storage," J. Appl. Phys. 96,2743-2752 (2004).
[CrossRef]

2003 (4)

A. V. Itagi, D. Stancil, J. Bain, and T. Schlesinger, "Ridge waveguide as a near-field optical source," Appl. Phys. Lett. 83,4474-4476 (2003).
[CrossRef]

T. W. McDaniel, W. A. Challener, and K. Sendur, "Issues in heat-assisted perpendicular recording," IEEE Trans. Magn. 39,1972-1979 (2003).
[CrossRef]

A. Hartschuh, N. Anderson, and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210234-240 (2003).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91,233901 (2003).
[CrossRef] [PubMed]

2002 (2)

M. Mallary, A. Torabi, and M. Benakli, "One terabit per square inch perpendicular recording conceptual design," IEEE Trans. Magn. 38,1719-1724 (2002).
[CrossRef]

X. Shi and L. Hesselink, "Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage," Jpn. J. Appl. Phys. 41,1632-1635 (2002).
[CrossRef]

2000 (2)

K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
[CrossRef] [PubMed]

R. Wood, "Feasibility of Magnetic Recording at 1 Terabit per Square Inch," IEEE Trans. Magn. 36,36-42 (2000).
[CrossRef]

1999 (1)

D. Weller and A. Moser, "Thermal effect limits in ultrahigh density magnetic recording," IEEE Trans. Magn. 35,4423-4439 (1999).
[CrossRef]

1997 (1)

1994 (1)

P. L. Lu and S. H. Charap, "Magnetic viscosity in high-density recording," J. Appl. Phys. 75,5768-5770 (1994).
[CrossRef]

1990 (1)

Anderson, N.

A. Hartschuh, N. Anderson, and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210234-240 (2003).
[CrossRef] [PubMed]

Bain, J.

A. V. Itagi, D. Stancil, J. Bain, and T. Schlesinger, "Ridge waveguide as a near-field optical source," Appl. Phys. Lett. 83,4474-4476 (2003).
[CrossRef]

Batra, S.

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

Bell, A. S.

Benakli, M.

M. Mallary, A. Torabi, and M. Benakli, "One terabit per square inch perpendicular recording conceptual design," IEEE Trans. Magn. 38,1719-1724 (2002).
[CrossRef]

Bogy, D. B.

L. Pan and D. B. Bogy, "Heat Assisted Magnetic Recording," Nature Photon. 3,189-190 (2009).
[CrossRef]

Brown, T. G.

Buechel, D.

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

Challener, W.

K. Sendur and W. Challener, "Patterned medium for heat assisted magnetic recording," Appl. Phys. Lett. 94,032503 (2009).
[CrossRef]

W. Challener, E. Gage, A. Itagi, and C. Peng, "Optical transducers for near-field recording," Jpn. J. Appl. Phys. 94,6632-6642 (2006).
[CrossRef]

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94,043901 (2005).
[CrossRef] [PubMed]

W. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature Planar Solid Immersion Mirror with Focused Spot Less Than a Quarter Wavelength," Opt. Express 13, 7189-7197 (2005).
[CrossRef] [PubMed]

K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near-field aperture for high density data storage," J. Appl. Phys. 96,2743-2752 (2004).
[CrossRef]

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T.W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, "Heat Assisted Magnetic Recording," Proc. IEEE 96,1810-1835 (2008).
[CrossRef]

T. W. McDaniel, W. A. Challener, and K. Sendur, "Issues in heat-assisted perpendicular recording," IEEE Trans. Magn. 39,1972-1979 (2003).
[CrossRef]

Charap, S. H.

P. L. Lu and S. H. Charap, "Magnetic viscosity in high-density recording," J. Appl. Phys. 75,5768-5770 (1994).
[CrossRef]

Clarke, R. B. M.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91,233901 (2003).
[CrossRef] [PubMed]

Erden, M. F.

M. H. Kryder, E. C. Gage, T.W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, "Heat Assisted Magnetic Recording," Proc. IEEE 96,1810-1835 (2008).
[CrossRef]

Ford, D. H.

Gage, E.

W. Challener, E. Gage, A. Itagi, and C. Peng, "Optical transducers for near-field recording," Jpn. J. Appl. Phys. 94,6632-6642 (2006).
[CrossRef]

Gage, E. C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T.W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, "Heat Assisted Magnetic Recording," Proc. IEEE 96,1810-1835 (2008).
[CrossRef]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

Hartschuh, A.

A. Hartschuh, N. Anderson, and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210234-240 (2003).
[CrossRef] [PubMed]

Hesselink, L.

X. Shi and L. Hesselink, "Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage," Jpn. J. Appl. Phys. 41,1632-1635 (2002).
[CrossRef]

Hohlfeld, J.

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

Hsia, Y.-T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T.W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, "Heat Assisted Magnetic Recording," Proc. IEEE 96,1810-1835 (2008).
[CrossRef]

Itagi, A.

W. Challener, E. Gage, A. Itagi, and C. Peng, "Optical transducers for near-field recording," Jpn. J. Appl. Phys. 94,6632-6642 (2006).
[CrossRef]

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

A. V. Itagi, D. Stancil, J. Bain, and T. Schlesinger, "Ridge waveguide as a near-field optical source," Appl. Phys. Lett. 83,4474-4476 (2003).
[CrossRef]

Jones, P.

K. Sendur and P. Jones, "Effect of fly height and refractive index on the transmission efficiency of near-field optical transducers," Appl. Phys. Lett. 88,091110 (2006).
[CrossRef]

Ju, G.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T.W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, "Heat Assisted Magnetic Recording," Proc. IEEE 96,1810-1835 (2008).
[CrossRef]

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

Kimura, W. D.

Kryder, M. H.

M. H. Kryder, E. C. Gage, T.W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, "Heat Assisted Magnetic Recording," Proc. IEEE 96,1810-1835 (2008).
[CrossRef]

Kubota, Y.

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91,233901 (2003).
[CrossRef] [PubMed]

Li, L.

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

Lu, B.

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

Lu, P. L.

P. L. Lu and S. H. Charap, "Magnetic viscosity in high-density recording," J. Appl. Phys. 75,5768-5770 (1994).
[CrossRef]

Mallary, M.

M. Mallary, A. Torabi, and M. Benakli, "One terabit per square inch perpendicular recording conceptual design," IEEE Trans. Magn. 38,1719-1724 (2002).
[CrossRef]

McDaniel, T. W.

T. W. McDaniel, W. A. Challener, and K. Sendur, "Issues in heat-assisted perpendicular recording," IEEE Trans. Magn. 39,1972-1979 (2003).
[CrossRef]

McDaniel, T.W.

M. H. Kryder, E. C. Gage, T.W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, "Heat Assisted Magnetic Recording," Proc. IEEE 96,1810-1835 (2008).
[CrossRef]

McIntyre, D. H.

Mihalcea, C.

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

W. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature Planar Solid Immersion Mirror with Focused Spot Less Than a Quarter Wavelength," Opt. Express 13, 7189-7197 (2005).
[CrossRef] [PubMed]

Moser, A.

D. Weller and A. Moser, "Thermal effect limits in ultrahigh density magnetic recording," IEEE Trans. Magn. 35,4423-4439 (1999).
[CrossRef]

Mountfield, K.

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

Novotny, L.

A. Hartschuh, N. Anderson, and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210234-240 (2003).
[CrossRef] [PubMed]

Pan, L.

L. Pan and D. B. Bogy, "Heat Assisted Magnetic Recording," Nature Photon. 3,189-190 (2009).
[CrossRef]

Pelhos, K.

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

W. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature Planar Solid Immersion Mirror with Focused Spot Less Than a Quarter Wavelength," Opt. Express 13, 7189-7197 (2005).
[CrossRef] [PubMed]

Peng, C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

W. Challener, E. Gage, A. Itagi, and C. Peng, "Optical transducers for near-field recording," Jpn. J. Appl. Phys. 94,6632-6642 (2006).
[CrossRef]

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94,043901 (2005).
[CrossRef] [PubMed]

W. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature Planar Solid Immersion Mirror with Focused Spot Less Than a Quarter Wavelength," Opt. Express 13, 7189-7197 (2005).
[CrossRef] [PubMed]

K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near-field aperture for high density data storage," J. Appl. Phys. 96,2743-2752 (2004).
[CrossRef]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

Peng, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91,233901 (2003).
[CrossRef] [PubMed]

Rausch, T.

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

Riis, E.

Rottmayer, R.

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T.W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, "Heat Assisted Magnetic Recording," Proc. IEEE 96,1810-1835 (2008).
[CrossRef]

Schlesinger, T.

A. V. Itagi, D. Stancil, J. Bain, and T. Schlesinger, "Ridge waveguide as a near-field optical source," Appl. Phys. Lett. 83,4474-4476 (2003).
[CrossRef]

Seigler, M.

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

Sendur, K.

K. Sendur and W. Challener, "Patterned medium for heat assisted magnetic recording," Appl. Phys. Lett. 94,032503 (2009).
[CrossRef]

K. Sendur and P. Jones, "Effect of fly height and refractive index on the transmission efficiency of near-field optical transducers," Appl. Phys. Lett. 88,091110 (2006).
[CrossRef]

K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94,043901 (2005).
[CrossRef] [PubMed]

K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near-field aperture for high density data storage," J. Appl. Phys. 96,2743-2752 (2004).
[CrossRef]

T. W. McDaniel, W. A. Challener, and K. Sendur, "Issues in heat-assisted perpendicular recording," IEEE Trans. Magn. 39,1972-1979 (2003).
[CrossRef]

Shi, X.

X. Shi and L. Hesselink, "Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage," Jpn. J. Appl. Phys. 41,1632-1635 (2002).
[CrossRef]

Snadden, M. J.

Stancil, D.

A. V. Itagi, D. Stancil, J. Bain, and T. Schlesinger, "Ridge waveguide as a near-field optical source," Appl. Phys. Lett. 83,4474-4476 (2003).
[CrossRef]

Tidwell, S. C.

Torabi, A.

M. Mallary, A. Torabi, and M. Benakli, "One terabit per square inch perpendicular recording conceptual design," IEEE Trans. Magn. 38,1719-1724 (2002).
[CrossRef]

Weller, D.

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

D. Weller and A. Moser, "Thermal effect limits in ultrahigh density magnetic recording," IEEE Trans. Magn. 35,4423-4439 (1999).
[CrossRef]

Wood, R.

R. Wood, "Feasibility of Magnetic Recording at 1 Terabit per Square Inch," IEEE Trans. Magn. 36,36-42 (2000).
[CrossRef]

Yang, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

Youngworth, K. S.

Zhu, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

K. Sendur and P. Jones, "Effect of fly height and refractive index on the transmission efficiency of near-field optical transducers," Appl. Phys. Lett. 88,091110 (2006).
[CrossRef]

K. Sendur and W. Challener, "Patterned medium for heat assisted magnetic recording," Appl. Phys. Lett. 94,032503 (2009).
[CrossRef]

A. V. Itagi, D. Stancil, J. Bain, and T. Schlesinger, "Ridge waveguide as a near-field optical source," Appl. Phys. Lett. 83,4474-4476 (2003).
[CrossRef]

IEEE Trans. Mag. (1)

R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006).
[CrossRef]

IEEE Trans. Magn. (4)

D. Weller and A. Moser, "Thermal effect limits in ultrahigh density magnetic recording," IEEE Trans. Magn. 35,4423-4439 (1999).
[CrossRef]

M. Mallary, A. Torabi, and M. Benakli, "One terabit per square inch perpendicular recording conceptual design," IEEE Trans. Magn. 38,1719-1724 (2002).
[CrossRef]

R. Wood, "Feasibility of Magnetic Recording at 1 Terabit per Square Inch," IEEE Trans. Magn. 36,36-42 (2000).
[CrossRef]

T. W. McDaniel, W. A. Challener, and K. Sendur, "Issues in heat-assisted perpendicular recording," IEEE Trans. Magn. 39,1972-1979 (2003).
[CrossRef]

J. Appl. Phys. (2)

P. L. Lu and S. H. Charap, "Magnetic viscosity in high-density recording," J. Appl. Phys. 75,5768-5770 (1994).
[CrossRef]

K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near-field aperture for high density data storage," J. Appl. Phys. 96,2743-2752 (2004).
[CrossRef]

J. Microsc. (1)

A. Hartschuh, N. Anderson, and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210234-240 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

W. Challener, E. Gage, A. Itagi, and C. Peng, "Optical transducers for near-field recording," Jpn. J. Appl. Phys. 94,6632-6642 (2006).
[CrossRef]

X. Shi and L. Hesselink, "Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage," Jpn. J. Appl. Phys. 41,1632-1635 (2002).
[CrossRef]

Nature Photon. (2)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009).
[CrossRef]

L. Pan and D. B. Bogy, "Heat Assisted Magnetic Recording," Nature Photon. 3,189-190 (2009).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (2)

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91,233901 (2003).
[CrossRef] [PubMed]

K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94,043901 (2005).
[CrossRef] [PubMed]

Proc. IEEE (1)

M. H. Kryder, E. C. Gage, T.W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, "Heat Assisted Magnetic Recording," Proc. IEEE 96,1810-1835 (2008).
[CrossRef]

Other (5)

S. I. Iwasaki and J. Hokkyo, Perpendicular Magnetic Recording (IOS, Amsterdam, 1991).

X. Shi, R. Thornton, and L. Hesselink, "Nano-aperture with 1000x power throughput enhancement for very small aperture laser system (VSAL)," Proc. SPIE Int. Soc. Opt. Eng. 4342, 320 (2002).

L. Novotny and B. Hecht, Principles of Nano-Optics, Chapter 3 (Cambridge University Press, New York, NY, 2006)

E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, CA, 1998).

J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, NY, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

A longitudinal oriented ridge waveguide with respect to the recording magnetic medium is illustrated. The green layer represents the magnetic thin film. The ridge waveguide and the magnetic layer are separated by an air gap which has a thickness equivalent to the fly height. To facilitate a quick removal of heat from the magnetic layer for high data transfer rates, a heat sink layer is placed under the magnetic layer.

Fig. 2.
Fig. 2.

The polarization of the incident electromagnetic radiation with respect to the axis of the ridge waveguide.

Fig. 3.
Fig. 3.

Optical intensity in the recording magnetic medium is plotted for the longitudinal oriented ridge waveguide transducer for 8 nm fly height.

Fig. 4.
Fig. 4.

The intensity enhancement versus wavelength for perpendicular and longitudinal transducers.

Fig. 5.
Fig. 5.

A longitudinal ridge waveguide transducer in the vicinity of a magnetic head pole, which is represented by the blue box.

Fig. 6.
Fig. 6.

The original problem that illustrates an electric monopole placed at a distance L from a conducting half-space, which occupies the region defined as z < 0.

Fig. 7.
Fig. 7.

An equivalent problem where the conducting half-space is replaced with a vacuum as well as another electric monopole with a charge of equal magnitude and opposite sign that is placed in the lower half-space at a distance L from the interface.

Fig. 8.
Fig. 8.

A perpendicular oriented ridge waveguide with respect to the recording magnetic medium is illustrated. The green layer represents the magnetic thin film layer. The ridge waveguide and the magnetic layer are separated by an air gap which has a thickness equivalent to the fly height. The heat sink layer under the magnetic layer forms the opposite surface of the ridge waveguide transducer.

Fig. 9.
Fig. 9.

A perpendicular oriented ridge waveguide transducer in the vicinity of a semi-infinite conducting layer. The charge is accumulated on the ridge for a perpendicular ridge waveguide.

Fig. 10.
Fig. 10.

An equivalent problem to the perpendicular transducer, which yields the same solution at the upper-half space due to the equivalance principle and image theory.

Fig. 11.
Fig. 11.

Optical intensity in the recording magnetic medium is plotted for the perpendicular oriented ridge waveguide transducer for 8 nm fly height.

Fig. 12.
Fig. 12.

Optical intensity in the recording magnetic medium is plotted for the longitudinal oriented ridge waveguide transducer for 15 nm fly height.

Fig. 13.
Fig. 13.

Optical intensity in the recording magnetic medium is plotted for the perpendicular oriented ridge waveguide transducer for 15 nm fly height.

Fig. 14.
Fig. 14.

Peak optical intensity in the recording medium as a function of fly height for different transducer orientations.

Tables (1)

Tables Icon

Table 1. The dielectric constant of metals used in this study at the wavelengths of 625 nm and 750 nm.

Metrics