Abstract

Monitoring of changing samples by Cavity Ring-Down Spectroscopy (CRDS) is possible using fast frequency scans of the laser and/or the cavity resonance. Mode-matched cavity excitation improves performance of fast CRDS but data-points result separated by the cavity Free Spectral Range (FSR): low pressure samples demand long cavities. We demonstrate fast CRDS with off-axis injection of a “re-entrant” resonator yielding FSR/N data-points separation. Our N = 4 short-cavity setup is found to perform well compared with other fast-CRDS implementations. Interestingly, the intrinsic chirped ringing affecting ring-down signals in mode-matched fast-CRDS disappear with off-axis injection. This is due to a fine splitting of the re-entrant-cavity degenerate groups of modes by astigmatism.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Herbelin, J. A. MacKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, “Sensitive measurement of photon lifetime and true reflectance in an optical cavity by a phase-shift method,” Appl. Opt. 19(1), 144–147 (1980).
    [CrossRef] [PubMed]
  2. D. Z. Anderson, J. C. Frisch, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23(8), 1238–1245 (1984).
    [CrossRef] [PubMed]
  3. A. O’Keefe and D. A. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
    [CrossRef]
  4. K. K. Lehmann, U.S. Patent No., 5 528 040 (1996).
  5. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring-down spectroscopy,” Chem. Phys. Lett. 264(3-4), 316–322 (1997).
    [CrossRef]
  6. D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270(5-6), 538–545 (1997).
    [CrossRef]
  7. D. Romanini, P. Dupré, and R. Jost, “Non-linear effects by continuous wave cavity ring-down spectroscopy in jet-cooled NO2,” Vib. Spect. 19, 99–106 (1999).
    [CrossRef]
  8. Y. He and B. J. Orr, “Ring-down and cavity–enhanced absorption spectroscopy using a continuous-wave tuneable diode laser and a rapidly-swept optical cavity,” Chem. Phys. Lett. 319(1-2), 131–137 (2000).
    [CrossRef]
  9. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, and H. Lee, “Cavity ring-down spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38(9), 1859–1866 (1999).
    [CrossRef]
  10. Y. He and B. J. Orr, “Rapid measurement of cavity ring-down absorption spectra with a swept frequency laser,” Appl. Phys. B 79(8), 941–945 (2004).
    [CrossRef]
  11. Z. Y. Li, R. G. T. Bennett, and G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86(1), 51–57 (1991).
    [CrossRef]
  12. M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, “Dynamic response of a Fabry-Perot interferometer,” J. Opt. Soc. Am. B 16(4), 523–532 (1999).
    [CrossRef]
  13. J. Morville, D. Romanini, M. Chenevier, and A. A. Kachanov, “Effects of laser phase noise on the injection of a high-finesse cavity,” Appl. Opt. 41(33), 6980–6990 (2002).
    [CrossRef] [PubMed]
  14. Y. He and B. J. Orr, “Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules,” Appl. Opt. 44(31), 6752–6761 (2005).
    [CrossRef] [PubMed]
  15. I. Debecker, A. K. Mohamed, and D. Romanini, “High-speed cavity ringdown spectroscopy with increased spectral resolution by simultaneous laser and cavity tuning,” Opt. Express 13(8), 2906–2915 (2005).
    [CrossRef] [PubMed]
  16. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001).
    [CrossRef]
  17. G. Meijer, M. G. H. Boogaarts, and A. M. Wodtke, “Coherent cavity ring-down spectroscopy,” Chem. Phys. Lett. 217(1-2), 112–116 (1994).
    [CrossRef]
  18. D. R. Herriott, H. Kogelnik, and R. Kompfner, “Off-Axis Paths in Spherical Mirror Interferometers,” Appl. Opt. 3(4), 523–526 (1964).
    [CrossRef]
  19. A. E. Siegman, “Lasers” (University Science Books, Mill Valley, CA, 1986).
  20. K. K. Lehmann and D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105(23), 10263–10277 (1996).
    [CrossRef]
  21. I. A. Ramsay and J. J. Degnan, “A ray analysis of optical resonators formed by two spherical mirrors,” Appl. Opt. 9(2), 385–398 (1970).
    [CrossRef] [PubMed]
  22. J. B. Goldsborough, “Beat frequencies between modes of a concave-mirror optical resonator,” Appl. Opt. 3(2), 267–275 (1964).
    [CrossRef]
  23. D. Romanini, Laboratoire de Spectrométrie Physique, Université Joseph Fourier de Grenoble, 140 Rue de la physique, Grenoble, cedex France, is preparing a manuscript to be called “The optical resonator and a Gaussian beam: Their perfect marriage by superposition of transverse modes”.
  24. Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85(2-3), 355–364 (2006).
    [CrossRef]
  25. K. An, C. Yang, R. R. Dasari, and M. S. Feld, “Cavity ring-down technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20(9), 1068–1070 (1995).
    [CrossRef] [PubMed]
  26. L. Matone, M. Barsuglia, F. Bondu, F. Cavalier, H. Heitmann, and N. Man, “Finesse and mirror speed measurement for a suspended Fabry–Perot cavity using the ringing effect,” Phys. Lett. A 271(5-6), 314–318 (2000).
    [CrossRef]
  27. J. Poirson, F. Bretenaker, M. Vallet, and A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14(11), 20811–22817 (1997).
    [CrossRef]
  28. R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express 14(13), 6069–6074 (2006).
    [CrossRef] [PubMed]
  29. T. Klaassen, J. de Jong, M. van Exter, and J. P. Woerdman, “Transverse mode coupling in an optical resonator,” Opt. Lett. 30(15), 1959–1961 (2005).
    [CrossRef] [PubMed]

2006 (2)

Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85(2-3), 355–364 (2006).
[CrossRef]

R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express 14(13), 6069–6074 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

Y. He and B. J. Orr, “Rapid measurement of cavity ring-down absorption spectra with a swept frequency laser,” Appl. Phys. B 79(8), 941–945 (2004).
[CrossRef]

2002 (1)

2001 (1)

2000 (2)

Y. He and B. J. Orr, “Ring-down and cavity–enhanced absorption spectroscopy using a continuous-wave tuneable diode laser and a rapidly-swept optical cavity,” Chem. Phys. Lett. 319(1-2), 131–137 (2000).
[CrossRef]

L. Matone, M. Barsuglia, F. Bondu, F. Cavalier, H. Heitmann, and N. Man, “Finesse and mirror speed measurement for a suspended Fabry–Perot cavity using the ringing effect,” Phys. Lett. A 271(5-6), 314–318 (2000).
[CrossRef]

1999 (3)

1997 (3)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring-down spectroscopy,” Chem. Phys. Lett. 264(3-4), 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270(5-6), 538–545 (1997).
[CrossRef]

J. Poirson, F. Bretenaker, M. Vallet, and A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14(11), 20811–22817 (1997).
[CrossRef]

1996 (1)

K. K. Lehmann and D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105(23), 10263–10277 (1996).
[CrossRef]

1995 (1)

1994 (1)

G. Meijer, M. G. H. Boogaarts, and A. M. Wodtke, “Coherent cavity ring-down spectroscopy,” Chem. Phys. Lett. 217(1-2), 112–116 (1994).
[CrossRef]

1991 (1)

Z. Y. Li, R. G. T. Bennett, and G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86(1), 51–57 (1991).
[CrossRef]

1988 (1)

A. O’Keefe and D. A. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[CrossRef]

1984 (1)

1980 (1)

1970 (1)

1964 (2)

An, K.

Anderson, D. Z.

Anderson, J. G.

Barsuglia, M.

L. Matone, M. Barsuglia, F. Bondu, F. Cavalier, H. Heitmann, and N. Man, “Finesse and mirror speed measurement for a suspended Fabry–Perot cavity using the ringing effect,” Phys. Lett. A 271(5-6), 314–318 (2000).
[CrossRef]

Benard, D. J.

Bennett, R. G. T.

Z. Y. Li, R. G. T. Bennett, and G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86(1), 51–57 (1991).
[CrossRef]

Bondu, F.

L. Matone, M. Barsuglia, F. Bondu, F. Cavalier, H. Heitmann, and N. Man, “Finesse and mirror speed measurement for a suspended Fabry–Perot cavity using the ringing effect,” Phys. Lett. A 271(5-6), 314–318 (2000).
[CrossRef]

Boogaarts, M. G. H.

G. Meijer, M. G. H. Boogaarts, and A. M. Wodtke, “Coherent cavity ring-down spectroscopy,” Chem. Phys. Lett. 217(1-2), 112–116 (1994).
[CrossRef]

Bretenaker, F.

J. Poirson, F. Bretenaker, M. Vallet, and A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14(11), 20811–22817 (1997).
[CrossRef]

Byer, R. L.

Cavalier, F.

L. Matone, M. Barsuglia, F. Bondu, F. Cavalier, H. Heitmann, and N. Man, “Finesse and mirror speed measurement for a suspended Fabry–Perot cavity using the ringing effect,” Phys. Lett. A 271(5-6), 314–318 (2000).
[CrossRef]

Chenevier, M.

Dasari, R. R.

de Jong, J.

Deacon, D. A.

A. O’Keefe and D. A. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[CrossRef]

Debecker, I.

Degnan, J. J.

Dupré, P.

D. Romanini, P. Dupré, and R. Jost, “Non-linear effects by continuous wave cavity ring-down spectroscopy in jet-cooled NO2,” Vib. Spect. 19, 99–106 (1999).
[CrossRef]

Feld, M. S.

Frisch, J. C.

Goldsborough, J. B.

Gustafson, E. K.

Hahn, J. W.

He, Y.

Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85(2-3), 355–364 (2006).
[CrossRef]

Y. He and B. J. Orr, “Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules,” Appl. Opt. 44(31), 6752–6761 (2005).
[CrossRef] [PubMed]

Y. He and B. J. Orr, “Rapid measurement of cavity ring-down absorption spectra with a swept frequency laser,” Appl. Phys. B 79(8), 941–945 (2004).
[CrossRef]

Y. He and B. J. Orr, “Ring-down and cavity–enhanced absorption spectroscopy using a continuous-wave tuneable diode laser and a rapidly-swept optical cavity,” Chem. Phys. Lett. 319(1-2), 131–137 (2000).
[CrossRef]

Heitmann, H.

L. Matone, M. Barsuglia, F. Bondu, F. Cavalier, H. Heitmann, and N. Man, “Finesse and mirror speed measurement for a suspended Fabry–Perot cavity using the ringing effect,” Phys. Lett. A 271(5-6), 314–318 (2000).
[CrossRef]

Herbelin, J. M.

Herriott, D. R.

Husman, M. E.

Jost, R.

D. Romanini, P. Dupré, and R. Jost, “Non-linear effects by continuous wave cavity ring-down spectroscopy in jet-cooled NO2,” Vib. Spect. 19, 99–106 (1999).
[CrossRef]

Kachanov, A. A.

J. Morville, D. Romanini, M. Chenevier, and A. A. Kachanov, “Effects of laser phase noise on the injection of a high-finesse cavity,” Appl. Opt. 41(33), 6980–6990 (2002).
[CrossRef] [PubMed]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring-down spectroscopy,” Chem. Phys. Lett. 264(3-4), 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270(5-6), 538–545 (1997).
[CrossRef]

Kim, J. W.

Klaassen, T.

Kogelnik, H.

Kompfner, R.

Kwok, M. A.

Lapson, L.

Lawrence, M. J.

Le Floch, A.

J. Poirson, F. Bretenaker, M. Vallet, and A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14(11), 20811–22817 (1997).
[CrossRef]

Lee, H.

Lee, J. Y.

Lehmann, K. K.

K. K. Lehmann and D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105(23), 10263–10277 (1996).
[CrossRef]

Li, Z. Y.

Z. Y. Li, R. G. T. Bennett, and G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86(1), 51–57 (1991).
[CrossRef]

MacKay, J. A.

Man, N.

L. Matone, M. Barsuglia, F. Bondu, F. Cavalier, H. Heitmann, and N. Man, “Finesse and mirror speed measurement for a suspended Fabry–Perot cavity using the ringing effect,” Phys. Lett. A 271(5-6), 314–318 (2000).
[CrossRef]

Masser, C. S.

Matone, L.

L. Matone, M. Barsuglia, F. Bondu, F. Cavalier, H. Heitmann, and N. Man, “Finesse and mirror speed measurement for a suspended Fabry–Perot cavity using the ringing effect,” Phys. Lett. A 271(5-6), 314–318 (2000).
[CrossRef]

Meijer, G.

G. Meijer, M. G. H. Boogaarts, and A. M. Wodtke, “Coherent cavity ring-down spectroscopy,” Chem. Phys. Lett. 217(1-2), 112–116 (1994).
[CrossRef]

Mohamed, A. K.

Morville, J.

O’Keefe, A.

A. O’Keefe and D. A. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[CrossRef]

Orr, B. J.

Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85(2-3), 355–364 (2006).
[CrossRef]

Y. He and B. J. Orr, “Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules,” Appl. Opt. 44(31), 6752–6761 (2005).
[CrossRef] [PubMed]

Y. He and B. J. Orr, “Rapid measurement of cavity ring-down absorption spectra with a swept frequency laser,” Appl. Phys. B 79(8), 941–945 (2004).
[CrossRef]

Y. He and B. J. Orr, “Ring-down and cavity–enhanced absorption spectroscopy using a continuous-wave tuneable diode laser and a rapidly-swept optical cavity,” Chem. Phys. Lett. 319(1-2), 131–137 (2000).
[CrossRef]

Paschotta, R.

Paul, J. B.

Poirson, J.

J. Poirson, F. Bretenaker, M. Vallet, and A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14(11), 20811–22817 (1997).
[CrossRef]

Ramsay, I. A.

Romanini, D.

I. Debecker, A. K. Mohamed, and D. Romanini, “High-speed cavity ringdown spectroscopy with increased spectral resolution by simultaneous laser and cavity tuning,” Opt. Express 13(8), 2906–2915 (2005).
[CrossRef] [PubMed]

J. Morville, D. Romanini, M. Chenevier, and A. A. Kachanov, “Effects of laser phase noise on the injection of a high-finesse cavity,” Appl. Opt. 41(33), 6980–6990 (2002).
[CrossRef] [PubMed]

D. Romanini, P. Dupré, and R. Jost, “Non-linear effects by continuous wave cavity ring-down spectroscopy in jet-cooled NO2,” Vib. Spect. 19, 99–106 (1999).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270(5-6), 538–545 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring-down spectroscopy,” Chem. Phys. Lett. 264(3-4), 316–322 (1997).
[CrossRef]

K. K. Lehmann and D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105(23), 10263–10277 (1996).
[CrossRef]

D. Romanini, Laboratoire de Spectrométrie Physique, Université Joseph Fourier de Grenoble, 140 Rue de la physique, Grenoble, cedex France, is preparing a manuscript to be called “The optical resonator and a Gaussian beam: Their perfect marriage by superposition of transverse modes”.

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring-down spectroscopy,” Chem. Phys. Lett. 264(3-4), 316–322 (1997).
[CrossRef]

Spencer, D. J.

Stedman, G. E.

Z. Y. Li, R. G. T. Bennett, and G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86(1), 51–57 (1991).
[CrossRef]

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring-down spectroscopy,” Chem. Phys. Lett. 264(3-4), 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270(5-6), 538–545 (1997).
[CrossRef]

Ueunten, R. H.

Urevig, D. S.

Vallet, M.

J. Poirson, F. Bretenaker, M. Vallet, and A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14(11), 20811–22817 (1997).
[CrossRef]

van Exter, M.

Willke, B.

Wodtke, A. M.

G. Meijer, M. G. H. Boogaarts, and A. M. Wodtke, “Coherent cavity ring-down spectroscopy,” Chem. Phys. Lett. 217(1-2), 112–116 (1994).
[CrossRef]

Woerdman, J. P.

Yang, C.

Yoo, Y. S.

Appl. Opt. (9)

J. M. Herbelin, J. A. MacKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, “Sensitive measurement of photon lifetime and true reflectance in an optical cavity by a phase-shift method,” Appl. Opt. 19(1), 144–147 (1980).
[CrossRef] [PubMed]

D. Z. Anderson, J. C. Frisch, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23(8), 1238–1245 (1984).
[CrossRef] [PubMed]

J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, and H. Lee, “Cavity ring-down spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38(9), 1859–1866 (1999).
[CrossRef]

J. Morville, D. Romanini, M. Chenevier, and A. A. Kachanov, “Effects of laser phase noise on the injection of a high-finesse cavity,” Appl. Opt. 41(33), 6980–6990 (2002).
[CrossRef] [PubMed]

Y. He and B. J. Orr, “Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules,” Appl. Opt. 44(31), 6752–6761 (2005).
[CrossRef] [PubMed]

J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001).
[CrossRef]

D. R. Herriott, H. Kogelnik, and R. Kompfner, “Off-Axis Paths in Spherical Mirror Interferometers,” Appl. Opt. 3(4), 523–526 (1964).
[CrossRef]

I. A. Ramsay and J. J. Degnan, “A ray analysis of optical resonators formed by two spherical mirrors,” Appl. Opt. 9(2), 385–398 (1970).
[CrossRef] [PubMed]

J. B. Goldsborough, “Beat frequencies between modes of a concave-mirror optical resonator,” Appl. Opt. 3(2), 267–275 (1964).
[CrossRef]

Appl. Phys. B (2)

Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85(2-3), 355–364 (2006).
[CrossRef]

Y. He and B. J. Orr, “Rapid measurement of cavity ring-down absorption spectra with a swept frequency laser,” Appl. Phys. B 79(8), 941–945 (2004).
[CrossRef]

Chem. Phys. Lett. (4)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring-down spectroscopy,” Chem. Phys. Lett. 264(3-4), 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270(5-6), 538–545 (1997).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, and A. M. Wodtke, “Coherent cavity ring-down spectroscopy,” Chem. Phys. Lett. 217(1-2), 112–116 (1994).
[CrossRef]

Y. He and B. J. Orr, “Ring-down and cavity–enhanced absorption spectroscopy using a continuous-wave tuneable diode laser and a rapidly-swept optical cavity,” Chem. Phys. Lett. 319(1-2), 131–137 (2000).
[CrossRef]

J. Chem. Phys. (1)

K. K. Lehmann and D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105(23), 10263–10277 (1996).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Poirson, F. Bretenaker, M. Vallet, and A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14(11), 20811–22817 (1997).
[CrossRef]

M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, “Dynamic response of a Fabry-Perot interferometer,” J. Opt. Soc. Am. B 16(4), 523–532 (1999).
[CrossRef]

Opt. Commun. (1)

Z. Y. Li, R. G. T. Bennett, and G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86(1), 51–57 (1991).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Lett. A (1)

L. Matone, M. Barsuglia, F. Bondu, F. Cavalier, H. Heitmann, and N. Man, “Finesse and mirror speed measurement for a suspended Fabry–Perot cavity using the ringing effect,” Phys. Lett. A 271(5-6), 314–318 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

A. O’Keefe and D. A. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[CrossRef]

Vib. Spect. (1)

D. Romanini, P. Dupré, and R. Jost, “Non-linear effects by continuous wave cavity ring-down spectroscopy in jet-cooled NO2,” Vib. Spect. 19, 99–106 (1999).
[CrossRef]

Other (3)

K. K. Lehmann, U.S. Patent No., 5 528 040 (1996).

A. E. Siegman, “Lasers” (University Science Books, Mill Valley, CA, 1986).

D. Romanini, Laboratoire de Spectrométrie Physique, Université Joseph Fourier de Grenoble, 140 Rue de la physique, Grenoble, cedex France, is preparing a manuscript to be called “The optical resonator and a Gaussian beam: Their perfect marriage by superposition of transverse modes”.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental non mode-matched multimode cavity transmission signals for a laser scan spanning one cavity FSR, for cavity lengths of (a) ~23.8 cm and (b) ~29.3 and for 1-m mirror curvature. For this last case of a magic-length resonator, with (N = 4, K = 1), transverse modes are degenerate in frequency at 4 positions equally dividing the cavity FSR. That is, only 4 distinct equally spaced resonances are observed, independently of the incident laser beam geometry

Fig. 4
Fig. 4

Experimental absorption profiles obtained from three distinct multimode cavity injections schemes (more or less multimode on-axis injection). For a better understanding, two of the profiles are shifted from the zero baseline.

Fig. 6
Fig. 6

The experimental cavity ring-down signals on the left, obtained with off-axis (top) and on-axis(bottom) excitation are compared with simulated signals (right curves) obtained respectively by the transient excitation of several transverse modes slightly split (by a weak astigmatism), which are thus excited at slightly different times, and by the transient excitation of a single mode (equivalent to several perfectly degenerate modes). Insets: Logarithm of the signals showing single exponential decay.

Fig. 2
Fig. 2

Experimental setup for high speed CRDS measurements. ECDL: external cavity diode laser. Fd: Fibredock. The scheme distinguishes two different experimental procedures in order to take advantage of the cavity transverse mode structure. The first setup concerns the on-axis multimode excitation by using a multimode optical fibre permitting to easily transfer incident radiation to a few low-order transverse modes, while the second scheme involves an off-axis excitation. In both cases the cavity length is taken at the N = 4 re-entrant order.

Fig. 3
Fig. 3

Experimental CRDS transmission for a ~29.3-cm long 4-times re-entrant cavity with (a) a TEM00 injection and (b) an off-axis multimode injection during identical laser scans (~4.6 THz.s−1) and time interval (3.1 ms). Taking advantage of the cavity transverse modes structure leads to increase the spectral resolution by a factor corresponding to the re-entrant order. In (c) is displayed an absorption profile of atmospheric oxygen at 1 bar obtained in 2.3 ms thanks to this ¼-fractionally degenerate cavity in the particular off-axis injection case.

Fig. 5
Fig. 5

On-axis multimode cavity injection for the same cavity configuration as in Fig. 3. (a): Ring-down time measurements without the absorber (green round points) reveal the periodic reflectivity dependence, whose period is identical to the cavity re-entrant order. In this same graph is illustrated, with the blue square points, the improvement in sensitivity when the 4 interlaced traces are translated to minimize their relative offset. (b): Due to coating inhomogeneity, each of the interlaced groups of modes [(m + n) modulo N] = 0..N-1 does not see the same reflectivity, thus absorption line profile appear very noisy if no correction is applied. In (c) we show the noise reduction on absorption spectra after minimising the loss difference between the N groups of modes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( t , ν ) = I 0 exp ( t τ ( ν ) ) ,
1 c τ ( ν ) = 1 R + α ( ν ) . L L ,
ν q , m n S p h e r i c a l = c 2 L ( q + ( m + n + 1 ) θ 2 π ) ,
ν q , m n = c 2 L N ( N q + K ( m + n + 1 ) ) .
ν q , m n A s t i g m a t = c 2 L ( q + ( m + 1 2 ) θ r X 2 π + ( n + 1 2 ) θ r Y 2 π ) ,

Metrics