Abstract

We propose and demonstrate metamaterial immersion lenses by shaping plasmonic metamaterials. The convex and concave shapes for the elliptically and hyperbolically dispersive metamaterials are designed using phase compensation method. Numerical simulations verify that the metamaterial immersion lenses possess exceptionally large effective numerical apertures thus can achieve deep subwavelength resolution focusing. We also discuss the importance of the losses in modulating the optical transfer function and thus in enhancing the performance of the metamaterial immersion lenses.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikroskop. Anat. 9(1), 413–418 (1873).
    [CrossRef]
  2. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  4. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
    [CrossRef] [PubMed]
  5. E. E. Narimanov, “Far-field superlens: Optical Nanoscope,” Nat. Photonics 1(5), 260–261 (2007).
    [CrossRef]
  6. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [CrossRef] [PubMed]
  7. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [CrossRef] [PubMed]
  8. Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
    [CrossRef]
  9. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
    [CrossRef] [PubMed]
  10. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
    [CrossRef] [PubMed]
  11. F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
    [CrossRef] [PubMed]
  12. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-Subwavelength Focusing and Steering of Light in an Aperiodic Metallic Waveguide Array,” Appl. Phys. Lett. 103(3), 033902–033904 (2009).
    [CrossRef]
  13. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
    [CrossRef]
  14. L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett. 72(22), 2779–2781 (1998).
    [CrossRef]
  15. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
    [CrossRef]
  16. M. Rothschild, T. M. Bloomstein, R. R. Kunz, V. Liberman, M. Switkes, S. T. Palmacci, J. H. C. Sedlacek, D. Hardy, and A. Grenville, “Liquid immersion lithography: Why, how, and when?” J. Vac. Sci. Technol. B 22(6), 2877–2881 (2004).
    [CrossRef]
  17. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
    [CrossRef]
  18. H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, “Thermally assisted recording beyond traditional limits,” Appl. Phys. Lett. 84(5), 810–812 (2004).
    [CrossRef]
  19. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
    [CrossRef]
  20. S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
    [CrossRef]
  21. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  22. V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [CrossRef]
  23. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [CrossRef] [PubMed]
  24. G. Kino, “The solid immersion lens,” Proc. SPIE 3740, 2–6 (1999).
    [CrossRef]
  25. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
  26. K. Iizuka, Elements of Photonics (John Wiley & Sons, New York, 2002), Vol. 1.
  27. J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.-Condens. Matter 10(22), 4785–4809 (1998).
    [CrossRef]
  28. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
    [CrossRef] [PubMed]
  29. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
    [CrossRef] [PubMed]
  30. H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, “Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography,” Microelectron. Eng. 83(4-9), 956–961 (2006).
    [CrossRef]
  31. R. Völkel, H. P. Herzig, P. Nussbaum, R. Dandliker, and W. B. Hugle, “Microlens array imaging system for photolithography,” Opt. Eng. 35(11), 3323–3330 (1996).
    [CrossRef]

2009

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
[CrossRef] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-Subwavelength Focusing and Steering of Light in an Aperiodic Metallic Waveguide Array,” Appl. Phys. Lett. 103(3), 033902–033904 (2009).
[CrossRef]

Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
[CrossRef]

2008

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

2007

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

E. E. Narimanov, “Far-field superlens: Optical Nanoscope,” Nat. Photonics 1(5), 260–261 (2007).
[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

2006

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, “Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography,” Microelectron. Eng. 83(4-9), 956–961 (2006).
[CrossRef]

2005

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2004

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

M. Rothschild, T. M. Bloomstein, R. R. Kunz, V. Liberman, M. Switkes, S. T. Palmacci, J. H. C. Sedlacek, D. Hardy, and A. Grenville, “Liquid immersion lithography: Why, how, and when?” J. Vac. Sci. Technol. B 22(6), 2877–2881 (2004).
[CrossRef]

H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, “Thermally assisted recording beyond traditional limits,” Appl. Phys. Lett. 84(5), 810–812 (2004).
[CrossRef]

2003

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

2001

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[CrossRef]

1999

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

G. Kino, “The solid immersion lens,” Proc. SPIE 3740, 2–6 (1999).
[CrossRef]

1998

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.-Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett. 72(22), 2779–2781 (1998).
[CrossRef]

1996

R. Völkel, H. P. Herzig, P. Nussbaum, R. Dandliker, and W. B. Hugle, “Microlens array imaging system for photolithography,” Opt. Eng. 35(11), 3323–3330 (1996).
[CrossRef]

1994

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

1990

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[CrossRef]

1873

E. Abbe, “Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikroskop. Anat. 9(1), 413–418 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikroskop. Anat. 9(1), 413–418 (1873).
[CrossRef]

Alekseyev, L. V.

Barbastathis, G.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, “Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography,” Microelectron. Eng. 83(4-9), 956–961 (2006).
[CrossRef]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Bloomstein, T. M.

M. Rothschild, T. M. Bloomstein, R. R. Kunz, V. Liberman, M. Switkes, S. T. Palmacci, J. H. C. Sedlacek, D. Hardy, and A. Grenville, “Liquid immersion lithography: Why, how, and when?” J. Vac. Sci. Technol. B 22(6), 2877–2881 (2004).
[CrossRef]

Bogy, D. B.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-Subwavelength Focusing and Steering of Light in an Aperiodic Metallic Waveguide Array,” Appl. Phys. Lett. 103(3), 033902–033904 (2009).
[CrossRef]

Chao, D.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, “Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography,” Microelectron. Eng. 83(4-9), 956–961 (2006).
[CrossRef]

Conway, J.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

Crozier, K. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Dandliker, R.

R. Völkel, H. P. Herzig, P. Nussbaum, R. Dandliker, and W. B. Hugle, “Microlens array imaging system for photolithography,” Opt. Eng. 35(11), 3323–3330 (1996).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

Elings, V. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett. 72(22), 2779–2781 (1998).
[CrossRef]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-Subwavelength Focusing and Steering of Light in an Aperiodic Metallic Waveguide Array,” Appl. Phys. Lett. 103(3), 033902–033904 (2009).
[CrossRef]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Feke, G. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

Ghislain, L. P.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett. 72(22), 2779–2781 (1998).
[CrossRef]

Goldberg, B. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[CrossRef]

Grenville, A.

M. Rothschild, T. M. Bloomstein, R. R. Kunz, V. Liberman, M. Switkes, S. T. Palmacci, J. H. C. Sedlacek, D. Hardy, and A. Grenville, “Liquid immersion lithography: Why, how, and when?” J. Vac. Sci. Technol. B 22(6), 2877–2881 (2004).
[CrossRef]

Grober, R. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

Hamann, H. F.

H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, “Thermally assisted recording beyond traditional limits,” Appl. Phys. Lett. 84(5), 810–812 (2004).
[CrossRef]

Hardy, D.

M. Rothschild, T. M. Bloomstein, R. R. Kunz, V. Liberman, M. Switkes, S. T. Palmacci, J. H. C. Sedlacek, D. Hardy, and A. Grenville, “Liquid immersion lithography: Why, how, and when?” J. Vac. Sci. Technol. B 22(6), 2877–2881 (2004).
[CrossRef]

Herzig, H. P.

R. Völkel, H. P. Herzig, P. Nussbaum, R. Dandliker, and W. B. Hugle, “Microlens array imaging system for photolithography,” Opt. Eng. 35(11), 3323–3330 (1996).
[CrossRef]

Holden, A.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.-Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Huang, F. M.

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
[CrossRef] [PubMed]

Hugle, W. B.

R. Völkel, H. P. Herzig, P. Nussbaum, R. Dandliker, and W. B. Hugle, “Microlens array imaging system for photolithography,” Opt. Eng. 35(11), 3323–3330 (1996).
[CrossRef]

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Ippolito, S. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[CrossRef]

Jacob, Z.

Kino, G.

G. Kino, “The solid immersion lens,” Proc. SPIE 3740, 2–6 (1999).
[CrossRef]

Kino, G. S.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[CrossRef]

Kunz, R. R.

M. Rothschild, T. M. Bloomstein, R. R. Kunz, V. Liberman, M. Switkes, S. T. Palmacci, J. H. C. Sedlacek, D. Hardy, and A. Grenville, “Liquid immersion lithography: Why, how, and when?” J. Vac. Sci. Technol. B 22(6), 2877–2881 (2004).
[CrossRef]

Lee, H.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Liberman, V.

M. Rothschild, T. M. Bloomstein, R. R. Kunz, V. Liberman, M. Switkes, S. T. Palmacci, J. H. C. Sedlacek, D. Hardy, and A. Grenville, “Liquid immersion lithography: Why, how, and when?” J. Vac. Sci. Technol. B 22(6), 2877–2881 (2004).
[CrossRef]

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Liu, Z.

Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Manalis, S. R.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[CrossRef]

Martin, Y. C.

H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, “Thermally assisted recording beyond traditional limits,” Appl. Phys. Lett. 84(5), 810–812 (2004).
[CrossRef]

Menon, R.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, “Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography,” Microelectron. Eng. 83(4-9), 956–961 (2006).
[CrossRef]

Minne, S. C.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Narimanov, E.

Narimanov, E. E.

E. E. Narimanov, “Far-field superlens: Optical Nanoscope,” Nat. Photonics 1(5), 260–261 (2007).
[CrossRef]

Nussbaum, P.

R. Völkel, H. P. Herzig, P. Nussbaum, R. Dandliker, and W. B. Hugle, “Microlens array imaging system for photolithography,” Opt. Eng. 35(11), 3323–3330 (1996).
[CrossRef]

Palmacci, S. T.

M. Rothschild, T. M. Bloomstein, R. R. Kunz, V. Liberman, M. Switkes, S. T. Palmacci, J. H. C. Sedlacek, D. Hardy, and A. Grenville, “Liquid immersion lithography: Why, how, and when?” J. Vac. Sci. Technol. B 22(6), 2877–2881 (2004).
[CrossRef]

Pan, L.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Patel, A.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, “Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography,” Microelectron. Eng. 83(4-9), 956–961 (2006).
[CrossRef]

Pendry, J.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.-Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

Quate, C. F.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Robbins, D.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.-Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Rothschild, M.

M. Rothschild, T. M. Bloomstein, R. R. Kunz, V. Liberman, M. Switkes, S. T. Palmacci, J. H. C. Sedlacek, D. Hardy, and A. Grenville, “Liquid immersion lithography: Why, how, and when?” J. Vac. Sci. Technol. B 22(6), 2877–2881 (2004).
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Sedlacek, J. H. C.

M. Rothschild, T. M. Bloomstein, R. R. Kunz, V. Liberman, M. Switkes, S. T. Palmacci, J. H. C. Sedlacek, D. Hardy, and A. Grenville, “Liquid immersion lithography: Why, how, and when?” J. Vac. Sci. Technol. B 22(6), 2877–2881 (2004).
[CrossRef]

Shalaev, V.

V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Smith, H. I.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, “Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography,” Microelectron. Eng. 83(4-9), 956–961 (2006).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Staffaroni, M.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

Stewart, W.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.-Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Switkes, M.

M. Rothschild, T. M. Bloomstein, R. R. Kunz, V. Liberman, M. Switkes, S. T. Palmacci, J. H. C. Sedlacek, D. Hardy, and A. Grenville, “Liquid immersion lithography: Why, how, and when?” J. Vac. Sci. Technol. B 22(6), 2877–2881 (2004).
[CrossRef]

Tang, J.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Unlu, M. S.

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[CrossRef]

Vedantam, S.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-Subwavelength Focusing and Steering of Light in an Aperiodic Metallic Waveguide Array,” Appl. Phys. Lett. 103(3), 033902–033904 (2009).
[CrossRef]

Völkel, R.

R. Völkel, H. P. Herzig, P. Nussbaum, R. Dandliker, and W. B. Hugle, “Microlens array imaging system for photolithography,” Opt. Eng. 35(11), 3323–3330 (1996).
[CrossRef]

Walsh, M.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, “Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography,” Microelectron. Eng. 83(4-9), 956–961 (2006).
[CrossRef]

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Wickramasinghe, H. K.

H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, “Thermally assisted recording beyond traditional limits,” Appl. Phys. Lett. 84(5), 810–812 (2004).
[CrossRef]

Wilder, K.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Wu, Q.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

Xiong, Y.

Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
[CrossRef]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Yablonovitch, E.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-Subwavelength Focusing and Steering of Light in an Aperiodic Metallic Waveguide Array,” Appl. Phys. Lett. 103(3), 033902–033904 (2009).
[CrossRef]

Zhang, X.

Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zheludev, N. I.

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-Subwavelength Focusing and Steering of Light in an Aperiodic Metallic Waveguide Array,” Appl. Phys. Lett. 103(3), 033902–033904 (2009).
[CrossRef]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[CrossRef]

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett. 72(22), 2779–2781 (1998).
[CrossRef]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, “Thermally assisted recording beyond traditional limits,” Appl. Phys. Lett. 84(5), 810–812 (2004).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001).
[CrossRef]

Arch. Mikroskop. Anat.

E. Abbe, “Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikroskop. Anat. 9(1), 413–418 (1873).
[CrossRef]

J. Mod. Opt.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

J. Phys.-Condens. Matter

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.-Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

J. Vac. Sci. Technol. B

M. Rothschild, T. M. Bloomstein, R. R. Kunz, V. Liberman, M. Switkes, S. T. Palmacci, J. H. C. Sedlacek, D. Hardy, and A. Grenville, “Liquid immersion lithography: Why, how, and when?” J. Vac. Sci. Technol. B 22(6), 2877–2881 (2004).
[CrossRef]

Microelectron. Eng.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, “Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography,” Microelectron. Eng. 83(4-9), 956–961 (2006).
[CrossRef]

Nano Lett.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
[CrossRef] [PubMed]

Nat. Mater.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Nat. Photonics

E. E. Narimanov, “Far-field superlens: Optical Nanoscope,” Nat. Photonics 1(5), 260–261 (2007).
[CrossRef]

V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Opt. Eng.

R. Völkel, H. P. Herzig, P. Nussbaum, R. Dandliker, and W. B. Hugle, “Microlens array imaging system for photolithography,” Opt. Eng. 35(11), 3323–3330 (1996).
[CrossRef]

Opt. Express

Proc. SPIE

G. Kino, “The solid immersion lens,” Proc. SPIE 3740, 2–6 (1999).
[CrossRef]

Science

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Other

K. Iizuka, Elements of Photonics (John Wiley & Sons, New York, 2002), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Equifrequency curves (EFCs) of air (dotted blue circle) and the metamaterials with an elliptic (solid red ellipse) and a hyperbolic (dashed red hyperbola) dispersion, respectively. (a) The interface of the metamaterials is a straight line along the kx direction; (b) The interface of the metamaterial with an elliptic dispersion has an angle α1 with respect to the kx axis; (c) The interface of the metamaterial with an hyperbolic dispersion has an angle α2 with respect to the kx axis. That is, the kxt axis is the interface in both (b) and (c).

Fig. 2
Fig. 2

Schematics of (a) an elliptic and (b) a hyperbolic metamaterial immersion lens.

Fig. 3
Fig. 3

Simulations of an elliptic MIL with (a) normal and (b) oblique incidence of plane wave.

Fig. 4
Fig. 4

Simulations of a hyperbolic MIL with (a) normal and (b) oblique incidence of plane wave.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k 0 ( h 0 n + ε x ' f m 2 + ε z ' x max 2 ) = k 0 [ ( h 0 h ) n + ε x ' ( f m + h ) 2 + ε z ' x 2 ]
h ( x ) = ( b + b 2 4 a c ) / ( 2 a )
Δ x = Re ( f ε x / ε z / ε z sin 2 θ sin θ )
Δ x Re ( f ε x / ε z sin θ )

Metrics